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Optimization in Machine Learning and Data Science

Multivariate data classification/regression by Support
Vector Machines (SVM)

@ Learning methodology: synthesize models from examples.
@ Supervised learning: learning from input/output (x/y) pairs.

@ Learning algorithm: finds a function relating outputs to inputs
(f(x) = y).
@ Depending on type of output we have:
» Binary classification: two classes of output (0/1, +1/ — 1).

» Multiclass classification: > 2 classes.
» Regression: continuous output.

@ SVM: supervised method based on hyperplanes for
binary/multiclass classification or regression.
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Optimization in Machine Learning and Data Science

Optimization is instrumental in machine learning!

This is from a presentation at CERN (Switzerland) on 24 March 2016
by Yann Le Cun:

.
Optimization
a

Machine Learning = Function

Yann Le Cun, Facebook Al Research Director, Center for Data Science, NYU Courant Institute of
Mathematical Sciences, NYU. http.//yann.lecun.com.
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Purpose of SV Classifiers
@ To find two parallel hyperplanes separating two classes such that

we both minimize the classification error and maximize the margin
between the two separating hyperplanes:

Bad classifiers Good classifier
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Modelling SVMs: linearly separable data

@ We want to classify m points x; e R”, i =1,....m.

@ Every point x belongs to one of two classes, linearly separated by the
hyperplane w ' x + ~ = 0, such that

if x is of class A then w'x+~> 4§
if xisofclass Othen w'x+~< —§

@ We can normalize assuming § = 1 (always possible dividing w and ~ by
0 > 0). Then every point belongs to the class +1 o0 —1.
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Separation margin

@ Given the mpairs (x;,y;) € R” x {+1,—-1}, i =1,..., mwe look for the
hyperplane defined by (w, ) with the maximum distance between
parallel planes w' x +~v > +1and w'x +~ < —1.

@ w is the normal to the separation hyperplane, + determines its location
with respect to the origin.

; . . 2
@ We’'ll show next that the margin between planes is s
2
+1 class
x’w+ y=-1

A

margin=2/|w|| , o

) —1 class
separation hyperplane *’ W + Y= 0
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SVM formulations SV Classifiers for linearly separable data

The margin between planes is ﬁ
@ Given two parallel hyperplanes x"w = aand x" w = b, and x; point of
the first plane (x;’ w = a), the closest point to x; in the second
hyperplane, named x,, (X, w = b) can be written as x> = x; + aw.,

@ Then:
X, = x' +aw’
X, w = xw+aw'w
b = a+allw|3
, . b-a
[Iwll3

@ The margin between hyperplanes is the 2-norm of aw:

b — a|

_|b—a
|3

lawllz = |l - |lwll2 =
[wll2

[wll2

@ Forthe SVM, a= —v —1and b= —v + 1, thus the margin is

2
w2
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SV Classifiers for linearly separable data

SVM formulations

SVM is a constrained quadratic optimization problem

@ The SVM is an optimization problem in variables w, :

maxX 2
ON,7)€H§”+1 ||M4|2

s.to yi(w'xi+v)>1

i=1,....m

@ Constraints impose:
w'x; +v > +1, for y; = +1
wlx +~ <=1, for y; = —1

@ The objective is equivalent to min %||w||2, which is equivalent to

min 3||w||53 = min fwTw.

@ Denoting by A € R™*" the matrix storing rowwise the vectors x;, by

Y = diag(yi,---,¥Ym), and by e a vector of m 1’s, the problem is
formulated in compact matrix form as:
min %WT w
(w,y)ERM1

s.to Y(Aw +~e) > e.
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SVM formulations

Example

SV Classifiers for linearly separable data

For this AMPL data... ...we get this separation plane by solving the optimization problem

# Initial values for n, m

param m:=8; B
param n:=2;
# y and A
param y := 5 |
1 1
2 1 e
3 1 £ e
4 1 Aiba e, T b
5 -1 H"‘\ ‘_“‘m\\k"‘\ -
6 -1 x\\\\“\\ S
_ 3 . SReg .
; *i H \\Rh\\\‘\:ﬁ\\\
H“‘-\‘_‘ \‘“-1\_ i
e ‘M\_\\ .
paliam A é j = 2 \B‘m ‘\\\\\ s,
Tl e g
2 4 2 T Tn =2
3 2 3.5 FEL e Tl
1 o o o ke 4
4 1 4
5 1 1
6 3 2 §
7 2 1 :
8 a1 ; 0 1 2 3 4 5
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SVM formulations SV Classifiers for linearly inseparable data: soft margin

Modelling SVMs: linearly inseparable data, soft margin

badly classified

margin=2/||w|| ,

separation hyperplane x’w + y=0

@ We consider artificial variables s; > 0, i = 1, ..., m, named slacks, one
for each point, to account for errors in the classification. The resulting
constraints are named soft constraints:

y/'(WTX/+7)Z1—S,- i=1,....m

@ Constraints impose:

w'x; 4+~ + s> +1, for y; = +1
WTX,'—I—’)/—S,'S—1, for y; = —1
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SV Classifiers for linearly inseparable data: soft margin
The constrained quadratic optimization problem
@ The objective is to maximize the margin, and at the same time to
m

minimize the classification errors » ~s; = e's. These two opposite
i=1
objectives are weighted by parameter v € R.

@ The SVM is an optimization problem in variables w, v, s:

. 1 - A

min —wW W+ S

(W,7,8)€RMH1+m 2 ; i
s. to y,'(WTX,'—}-’y)—i—S,'Z'i i=1,...,

3 3

or equivalently in matrix form

1
min —w'w+ve's
(W,~,s)ERMH1+m 2
s.to Y(Aw+~e)+s>e

s>0
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SVM formulations SV Classifiers for linearly inseparable data: soft margin

Example

For this AMPL data... ... We get this separation plane by solving the optimization problem

# Initial values for n, m and nu
param nu:=30;

param m:=8;
param n:=2;
# Generated y and A
param y := 57
1 1 N
2 1 lihhxi
1 T
Z 4 . ‘W\
5 -1 B e ™™
— —
6 -1 3 - DU S
7 -1 ‘H“‘x,x Sl e e
8 -1; T s 7Y H““m\_ﬁ
T ‘“«»kﬁ\x ﬁ““x\hx
param A : 1 2 = 2 ey 0 ey N N
1 301 e WA e S
2 4 2 S "
3 2 3.5 1 o + .
4 14 s
5 1 1
6 3 2 0 ‘
7 2 3 0 1 2 3 4 5
8 4 1;
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SVM formulations SV Classifiers for linearly inseparable data: kernel trick

Input and feature spaces

@ The space of the training set x € X C R"” is named input space.

@ If data are linearly inseparable, we can consider a mapping function

$: XCR"—> FCRN

X ¢1(x)
X=1" o(x) =

Xn ¢N(X)
@ F is named feature space.

@ The dimension of the input space is n. The dimension of the feature
space is N. N can be different from n.

@ We expect that using ¢(x) instead of x the SVM will perform better: the
hyperplane will separate ¢(x) better than x.
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SVM formulations

Input and feature spaces: examples
Casen=N=2

Case3=N>n=2

(Jordi Castro, UPC) Optimization and SVMs

SVM formulations

SVM formulation in feature space

@ Same formulation than in input space, replacing x by ¢(x).
@ The mapping only affects to input data, not to optimization model.

@ Linearly separable case:
: 1 4
min —Ww W
(w,y)eRNT1 2
s.to yi(wlé(x)+~y)>1 i=1,...,m

@ Soft margin case:

min —W W—|—1/ZS,

(W,’y,S)ERN+1+m
s. to (WT¢(X,)+’Y)+S,Z1 i=1,...,m
SI 2 0 i: 1,...,m
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SV Classifiers for linearly inseparable data: kernel trick
Example in input space

For this AMPL data... . ) . o
...we get this separation plane by solving the optimization problem

# Initial values for n, m and nu
param nu:=30;
param m:=8; 20 T T

param n:=2; /// //
# Generated y and A B
param y := YAl AP

1 1 7 ol 5

2 rd #
2 1 15 Vel o b
3 1 .
o /,/ =

4 1 //'/ /_/ : 5 4

5 -1 r s 7 . )

6 -1 ’ o // >

7 -1 10 // ) # /./

8 -1; /./ 5% //

s // P
v

param A : 1 2 = o /// /// o

1 3 10 . P YAy

2 a 17 g o H

3 2 5 ~ A A

4 1 1.5 Fawdy.

5 1 0.7 of /// 4//

6 3 7 . ,/./ o /,/

7 2 3 ' ; : '

8 4 15 ; 0 1 2 3 4
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SVM formulations SV Classifiers for linearly inseparable data: kernel trick

Example in feature space
For the previous data using the mapping

() 0= (269) - (Vi)

we get this separation plane by solving the optimization problem
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(Jordi Castro, UPC) Optimization and SVMs

22 /56

23 /56



SV Classifiers for linearly inseparable data: kernel trick
Definition of kernel

@ Consider for simplicity the input space X is finite with m points:
X={X1,...;.Xm}, i e R" i =1,....,m,

@ The representation of x; in the feature space is ¢(x;).

@ If we formulate the dual problem of the primal SVM problem (to be seen
later in the course) we will obtain inner products:

N
Ky = KO0 x) = 6(x) T 600) = 3 éu(x)eu() ij=1,....m

=1

A kernel is a function K : X x X — R such that for all x,y € X

K(x.y) = ¢(x)" 6(y)

where ¢ is a mapping from the input space X to the (inner product) space F.

v
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SVM formulations SV Classifiers for linearly inseparable data: kernel trick

Some properties of kernels
@ Kernels are symmetric functions:
K(x,y) = o(x) " o(y) = o(y) " ¢(x) = K(y, X)

@ If X is finite with m points then we then get a symmetric matrix

— .0y

@ The kernel can be seen a function that measures similarities between
pairs of inputs in the feature space.

@ If we have matrix K we even don’t need to know the mapping ¢(x)
(using the dual formulation of the SVM), even if N = cc.

@ The only requirement is that matrix K has to be positive semidefinite
(K = 0).
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SVM formulations SV Classifiers for linearly inseparable data: kernel trick

K > 0 is sufficient and necessary to be a kernel

Let X be a finite input space X = {xi,...,xm},x; € R", and K(x, x’) a
symmetric function (K(x, x’) = K(x’, x)) on X x X. Then K(x, x’) is a
kernel function if and only if the matrix

K = (K(Xi,X))ij=1,...m

is positive semidefinite.

RBF or Gaussian kernel

@ There are several available kernel functions, for instance the radial
basis or Gaussian kernel:

_llx=yll?

Kx,y)=e

(Jordi Castro, UPC) Optimization and SVMs 26 / 56

Purpose of SV regression

@ Given mpoints (x;,y;),i=1,...,m,where x; e R", y ¢ R

@ Find affine model y = w'x +~, w € R", v € R, such that small errors
(< €) are neglected.

We consider two s-insensitive loss functions:

e =-insensitive linear function e c-insensitive quadratic function
Lie =max(0,[w x4+~ -yl —¢) Lo =max(0,(|w x+~ -yl —¢)?)
:{0 if —e<wix+y—y<e [0 if—e<wix+y—y<e
\w'x+~—y|l—c otherwise Tl (IwTx+~vy—y|—¢)? otherwise

L case €=0 L, case €=0

= 0— wx+ Y -y -—0— W+ Y -y
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The SV regression models |

@ In ideal situation all points (x;, y;) should be within distance ¢ of plane
w'x +~=y,thatis:

—e<(W'xi+9)—yi<e i=1,....m

@ Since this is not possible, we need slacks s;” > 0 and s;” > 0 such that:

—s; —e<(W'Xi+7)—yi<e+s i=1,....m

(Jordi Castro, UPC) Optimization and SVMs 29 /56

SVM formulations Support vector regression

The SV regression models |l

@ The Ly SV regression model:

min —||wW||5 + v S+—|—S
L min - olwlB Z( )
s.to —s; —g<(w Xi+y)—yi<e+s" i=1,....m
sfzo s; >0 i=1,....m
@ The L, SV regression model:
min —|\w||5 +v SJr + (S 2
L min_ olwig Z(( (s))
s.to —s; —5<(WTX,—|—'}/) yi<e+st i=1,....m
s,+20 s: >0 i=1,....m
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SVM formulations Support vector regression

The SV regression models Il

@ Why term ||w||5 is minimized (equivalent to maximize margin between
planes)? Just a short explanation:

» According to theory, the prediction error of w' x + v = y decreases
with ||w||2: the smaller ||w||2, the smaller the prediction error.

» ¢ is vertical distance between planes; ||w/|| is associated to margin.
For fixed ¢ we find planes with widest margin. Wider margins make
more general the SVM and reduce overfitting.

» The term ||w||> convexifies the problem: it guarantees a unique
solution for L.
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SVM formulations Support vector regression

The SV regression models |V

12 T
* data *
‘\K YW+ Y
_ e s yawWx+y+l ———
10, Sy oy y=wx+y-1 -
. . \\‘\_ .\“"--\
. = \\\\ B, .
. T
» . :\‘\ ey *
. \ .
= 6 = \\ \..\..
- 2 }\\ \\"-,\H
» ; =
e \\\ )
4 g s |
- ‘ ‘\‘\-\ .
2+ ~_
0
0 1 2 3 4 5
X
4

(Jordi Castro, UPC) Optimization and SVMs 32 /56



SVM formulations Convexity of SVMs

SVMs are convex optimization problems

The optimization problem
min  f(x)
s.to xeQ

is convex if f is convex function and €2 is convex set.

SVM most general formulation: soft margin in feature space

: 1 -
i B WA LS
s.to yi(wTo(x)+~)+si>1 i=1,...
si>0 i=1,...

3 3

- -

@ The objective functions is convex quadratic.
@ The feasible set is a convex polyhedron
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Summary of necessary optimality conditions
@ Let
min  f(x)
s.to h(x)=0 [h(x)=0 i=1,...,m|
9x)<0  [g(x)<0 j=1,....p]
and its Lagrangian

L(X, A, 1) = FO) + ATh() + 17 g(x)

@ Necessary conditions If x* regular point and a local minimizer then
there exist \* € R™ and p* € RP such that:

First-order conditions (KKT)
() h(x*)=0,9g(x*) <0
(i) VxL(x*,X\*, u*) = VI(x*)+ Vh(x*)\* + Vg(x*)u* =0
(i) p*>0andp*'g(x*) =0 (if gj(x*) is inactive then ¥ = 0)
Second-order conditions
(iv) dTV2 L(x*, \*, n*)d > 0, for all
deM={d:Vh(x*)'d=0, Vgi(x*)"d=0j e A(x*)}.
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Summary of sufficient optimality conditions

@ Sufficient optimality conditions The point x* is local minimizer if:
First-order conditions (KKT)
(i) h(x*)=0,9(x*) <0
(i) VxL(x*, X\*,u*) = VFI(x*)+ Vh(x*)\* + Vg(x*)u* =0
(i) u*>0and p*"g(x*) =0 (if g(x*) is inactive then 17 = 0)
Second-order conditions
(iv) dTV2 L(x*, \*,u*)d > 0,foralld e M ={d: Vh(x*)"d =
0, Vgi(x*)Td=0je Ax*)n{j: pi > 04}
@ Necessary and sufficient conditions differ in:
» No need x* is regular;
» condition (iv):

dTVe L(x*,\,u)d >0 decM  [sufficient]
dTVZ L(x* \,p)d>0 deM [necessary]

(Jordi Castro, UPC) Optimization and SVMs 37 /56

Optimality conditions of SV classifiers

Optimality conditions of convex problems

KKT conditions are sufficient and necessary also for convex problems, no
need to check second order conditions

Given
min  f(x)
s.to h(x)=0 [hi(x)=0 i=1,...,m]|
g(x) <0  [g(x)<0 j=1,....p]

f,h,g € C', f and g; convex, and h(x) = Ax — b affine function. If first-order
KKT conditions are satisfied at x*, then x* is a global optimum.
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Optimality conditions of SV classifiers

The SVM formulation considered

SVM general formulation: soft margin in feature space

. 1 -
(W,’Y,Sr)nGIIEnHer EWTW—l— U;Si
s. to yi(WT¢(X,‘)—|j’Y)+S,‘Z1 i=1,....m
Si>0 i=1,...,m
o(x1)" 2 14
Defining A = : e R™N Y = ,ande= | :
d(Xm) " Ym 1m

SVM general formulation in matrix form

min % w'w+rve's
(w,y,8)€RMH1+m

s.to Y(Aw+~e)+s>e
s>0

(Jordi Castro, UPC) Optimization and SVMs 39 /56

Optimality conditions of SV classifiers

Lagrange multipliers and Lagrangian function of SVM

@ Standard form min f(x) s. to g(x) < 0 and Lagrange multipliers:

min %WT w+ve's
(w,7,8)ERn+1+m
s.to —-Y(Aw+~e)—-s+e<0 [AeR7
-s<0 [ € R™]
@ Lagrangian function

’
L(w,v,8,\u) = éWTW+ ve s+ AT (=Y(Aw +~e) —s+e)+u' (—s)

1 n m m m
R EZW;Z +v Y o si+ > N(—Yilo(x)Tw ) —si+1) =D s
e i= i=

i=1
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KKT optimality conditions of SVM
KKT conditions are necessary and sufficient (SVM is convex problem)

Primal feasibility
(i) Y(Aw+~e)+s>e, s>0

VL() =0
(i.w) Vwl()=w—ATYA)T =w—> \yid(x)=0 (nequations)
i=1

m
(i) VL) =-ATYe==> Ny =0 (1 equation)
i=1
(ii.s) VsL()=ve—-A—pu=0 (m equations)
Complementarity
(iii.\) X >0, )\/(y;(gb(X;)TW—{— v)+si—1)=0 i=1,....,m
(fii.p) i >0, pisi=0 =1,...,m
(Jordi Castro, UPC) Optimization and SVMs 41 /56

The dual of the SV classifier

Dual problem

@ Primal problem

mXin f(x)
sto h(x)=0 [hi(x)=0 i=1,...,m]|
gx) <0 [g(x) <0 j=1,...,p]

xeX
@ Lagrangian function:
L(x, A, 1) = £(x) + ATh(x) + " g(x)
@ Dual function q(\, ) is
q(As ) = min - L(X, A, 1)
xeX

Constraints h(x) = 0 and g(x) < 0 dualized, preserving x € X. Depending what is

dualized, different formulations obtained.
@ Dual problem
max  q(A, 1)
A p

p=>0

NOTE: although inf and sup preferred we will use min and max q().
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The dual of the SV classifier

Dual problem: example

min X12 + X22
sto xg+x >4
x120,% >0

4—X1 —x2§0
—x1 <0,-x <0

Solution is xj* = x3 = 2, f(x*) = 8.
Dual function is:

. 2 2 . 2 2
= m X{+Xx5+u(4—Xx1 —Xx2) = min X —uXy)+ (X5 — uxo) +4
q(p) % ZO,IXZZO 1 5 + n( 1 2) X120")(220( T — uxy) + (5 — pxe) u

Problem is separable, with solution:

X1 =X =0 ifu<0 since x2 —pux; >0
Xy =Xp=p/2 ifpu>0 since solution of min x2 — 1ux;

Then g(u) is the concave function:

_J 4 p<0
q(M)_{_M2/2+4M MZO

Solution of dual problem max g(p) is p* =4 and q(p*) = f(x*) = 8.
n=z

(Jordi Castro, UPC) Optimization and SVMs

The dual of the SV classifier

Some duality theorems

44 /56

Theorem (Concavity of g(\, 1))

The dual function
= minL = minf Th U
Gt ) = Ty UG 2 ) = ) 4 2 ) g g

is concave (in the region where it is finite, that is, the minimum exists).

v

Theorem (weak duality)

Let x be a feasible point of primal problem (i.e. h(x) =0, g(x) <0, x € X) and (A, ) a feasible

point of dual problem (i.e., i > 0), then

q(A, 1) < f(x)

v

Theorem (Strong duality)

If X is a convex set, f(x) and g(x) are convex functions, h(x) = Ax — b (affine function), under

certain constraints qualifications (Slater condition) then:

g, 1) = f(x7)

(Jordi Castro, UPC) Optimization and SVMs
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The dual of the SV classifier

Wolfe duality

@ Lagrangian duality does not require differentiability. Wolfe duality assumes differentiability.

@ If f(x), h(x) and g(x) are convex and differentiable functions, a necessary and sufficient
condition of optimality of the dual function

a(A, p) = mxin L(x, A, 1)
is
VXL(Xa >‘7 ,U) =0

@ The dual problem
max  q(A, p)
A

p=>0

can thus be recast as
max  L(x, \, p)
X, 1
VxL(x,A\,u) =0
p=>0

@ This allows a simpler formulation of some problems: LP, QP

(Jordi Castro, UPC) Optimization and SVMs 46 / 56

The dual of the SV classifier

SVM formulation in standard form

d(x1) T V1 14
Defining A = e RMXN Y — ,and e = :
¢(Xm)T Ym 1m
SVM in matrix standard form with
min 5 WTW = z/eT

(W,y,8)ERMH1+m
s.to —-Y(Aw+~e)—s+e<0 [NecR"]
-s<0 [ € R™]

Lagrangian function

1
L(w,v,8,\, 1) = EWTW+ vels+ A\ (=Y(Aw+~e)—s+e)—u's

1 n m m m
=5 D wE4+rd s+ > N(—yi(e(x) W) —si+1) = > s
i=1 i=1

i=1 i=1
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The dual of the SV classifier

Dual problem formulation (1)

SVM dual problem

max  L(w,~,S, A\ u)
W,Y,8,A, 1

Vwl(w,v,s8, A\, 1) =0 nconstraints
V4 L(w,v,8, A\, ) =0 1 constraint
VsL(w,v,8, A\, 1) =0 mconstraints
A>0, pn=>0

v

Detailed SVM dual problem

max  wTw +ve's+ AN (~Y(Aw+ye)—s+e)—u's
W,7,S, A, 1 2
w—(ATYA)T =0
AT Ye =0
ve—\A—p =0
A>0, p=>0

(Jordi Castro, UPC) Optimization and SVMs 48/ 56

The dual of the SV classifier

Dual problem formulation (Il)

Replacing w = (AT YA) T in the objective we get (details in the blackboard)

max ATe— IATYAAT YA
A1

AT Ye =0
ve—A—pu =0
A>0, pu>0

Using i > 0 and i = ve — X we finally have the QP (convex because matrix AAT = K > 0):

Dual of SVM (matrix form)

max  ATe— ZATYAAT YA

ATYe=0
0<Ax<v

Dual of SVM (scalar form)

max 374 A= 3 4 T ANy
ZiAiyi=0
0< A\ <v i:1,...,m
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The dual of the SV classifier

Retrieving normal vector w from the dual solution A

@ From w = AT Y\ we have

W= \iyid(x)

i=1

@ Considering the partition (MC, SV, NB) of points {1, ..., m}:

» MC C {1,..., m}: set of misclassified points.

» SV C {1,..., m}: set of support vectors (on planes w' x +~ = £1).

» NB={1,...,m}\ (MC U SV): non-binding points.
it can be shown that
s$i>0, \i=v ifie MC
{S,’ZO,)\,’ZO ifie SV
si=0,\,=0 ifie NB

and then
m
w = Z \iyid(x) = Z vyio(x;) + Z AiYio(Xi)
i—1 ieMC ieSV
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The dual of the SV classifier

Retrieving “intercept” ~+ from the dual solution A

We have to compute v of w'x 4+~ = +1. This is the procedure:
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@ Choose some point x; such that s; = 0 and \; > 0 (that is, i € SV).

@ Since x; is a support vector we know that

YW o(x)+9)—1=0  y =+1

@ Then we compute v as

(Jordi Castro, UPC) Optimization and SVMs

51 /56



Some software for SVMs

Best SVM packages in machine learning community

LIBSVM for linear/nonlinear kernels

@ Solves the dual SVM formulation, with several kernels (e.g. Gaussian)
@ Uses the SMO algorithm, specific for the dual SVM problem.

LIBLINEAR for linear kernels

@ Transforms the problem to a “similar” unconstrained one without .
@ It either solves the primal

| A\

1 u
min EWTW—I— y;max(OJ — y,-WTx,-)2
j=
or the dual
max  ATe— ZATYAATYA
0< A<y

using a trust-region CG Newton method or a coordinate descent algorithm.
@ Meaning of optimality tolerances different (looser) than with other approaches.
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Some software for SVMs

Example libsvm/liblinear: gender recognition by face

N Figure 1 ~
g
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