# Optimization and Support Vector Machines ELAVIO 1–5 July 2019, LLeida

Jordi Castro
GNOM - Mathematical Optimization Group

Dept. of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona



(Jordi Castro, UPC)

Optimization and SVMs

1 / 56

#### **Contents**

- Optimization in Machine Learning and Data Science
- SVM formulations
  - SV Classifiers for linearly separable data
  - SV Classifiers for linearly inseparable data: soft margin
  - SV Classifiers for linearly inseparable data: kernel trick
  - Support vector regression
  - Convexity of SVMs
- Optimality conditions of SV classifiers
- The dual of the SV classifier
- Some software for SVMs
- 6 Bibliography

(Jordi Castro, UPC) Optimization and SVMs 2 / 56

# Multivariate data classification/regression by Support Vector Machines (SVM)

- Learning methodology: synthesize models from examples.
- Supervised learning: learning from input/output (x/y) pairs.
- Learning algorithm: finds a function relating outputs to inputs (f(x) = y).
- Depending on type of output we have:
  - ▶ Binary classification: two classes of output (0/1, +1/-1).
  - Multiclass classification: > 2 classes.
  - Regression: continuous output.
- SVM: supervised method based on hyperplanes for binary/multiclass classification or regression.

(Jordi Castro, UPC)

Optimization and SVMs

4 / 56

Optimization in Machine Learning and Data Science

#### Optimization is instrumental in machine learning!

This is from a presentation at CERN (Switzerland) on 24 March 2016 by Yann Le Cun:



Yann Le Cun, Facebook Al Research Director, Center for Data Science, NYU Courant Institute of Mathematical Sciences, NYU. http://yann.lecun.com.

(Jordi Castro, UPC) Optimization and SVMs 5 / 56

# Purpose of SV Classifiers

 To find two parallel hyperplanes separating two classes such that we both minimize the classification error and maximize the margin between the two separating hyperplanes:

Bad classifiers



Good classifier

(Jordi Castro, UPC)

Optimization and SVMs

8 / 56

SVM formulations

SV Classifiers for linearly separable data

#### Modelling SVMs: linearly separable data

- We want to classify m points  $x_i \in \mathbb{R}^n$ , i = 1, ..., m.
- Every point x belongs to one of two classes, linearly separated by the hyperplane  $\mathbf{w}^{\top} \mathbf{x} + \gamma = \mathbf{0}$ , such that

if 
$$x$$
 is of class  $\triangle$  then  $\mathbf{w}^{\top}\mathbf{x} + \gamma \ge +\delta$  if  $x$  is of class  $\bigcirc$  then  $\mathbf{w}^{\top}\mathbf{x} + \gamma \le -\delta$ 

• We can normalize assuming  $\delta = 1$  (always possible dividing w and  $\gamma$  by  $\delta > 0$ ). Then every point belongs to the class +1 o -1.



(Jordi Castro, UPC) Optimization and SVMs 9 / 56

#### Separation margin

- Given the m pairs  $(x_i, y_i) \in \mathbb{R}^n \times \{+1, -1\}, i = 1, ..., m$  we look for the hyperplane defined by  $(w, \gamma)$  with the maximum distance between parallel planes  $w^\top x + \gamma \ge +1$  and  $w^\top x + \gamma \le -1$ .
- w is the normal to the separation hyperplane,  $\gamma$  determines its location with respect to the origin.
- We'll show next that the margin between planes is  $\frac{2}{||w||_2}$ .



(Jordi Castro, UPC)

Optimization and SVMs

10 / 56

**SVM** formulations

SV Classifiers for linearly separable data

# The margin between planes is $\frac{2}{||w||_2}$

- Given two parallel hyperplanes  $x^\top w = a$  and  $x^\top w = b$ , and  $x_1$  point of the first plane  $(x_1^\top w = a)$ , the closest point to  $x_1$  in the second hyperplane, named  $x_2$ ,  $(x_2^\top w = b)$  can be written as  $x_2 = x_1 + \alpha w$ .
- Then:

$$x_{2}^{\top} = x_{1}^{\top} + \alpha \mathbf{w}^{\top}$$

$$x_{2}^{\top} \mathbf{w} = x_{1}^{\top} \mathbf{w} + \alpha \mathbf{w}^{\top} \mathbf{w}$$

$$b = a + \alpha ||\mathbf{w}||_{2}^{2}$$

$$\alpha = \frac{b - a}{||\mathbf{w}||_{2}^{2}}$$

• The margin between hyperplanes is the 2-norm of  $\alpha w$ :

$$||\alpha w||_2 = |\alpha| \cdot ||w||_2 = \frac{|b-a|}{||w||_2^2} ||w||_2 = \frac{|b-a|}{||w||_2}$$

• For the SVM,  $a = -\gamma - 1$  and  $b = -\gamma + 1$ , thus the margin is  $\frac{2}{||w||_2}$ .

(Jordi Castro, UPC) Optimization and SVMs 11 / 56

#### SVM is a constrained quadratic optimization problem

• The SVM is an optimization problem in variables  $w, \gamma$ :

optimization problem in variables 
$$w, \gamma$$
:
$$\max_{\substack{(w,\gamma)\in\mathbb{R}^{n+1}\\ \text{s. to}}} \frac{\frac{2}{||w||_2}}{\text{s. to}} y_i(w^\top x_i + \gamma) \geq 1 \quad i = 1, \dots, m$$

$$\text{pose:}$$

Constraints impose:

$$w^{\top} x_i + \gamma \ge +1$$
, for  $y_i = +1$   
 $w^{\top} x_i + \gamma \le -1$ , for  $y_i = -1$ 

- The objective is equivalent to  $\min \frac{1}{2} ||w||_2$ , which is equivalent to  $\min \frac{1}{2} ||w||_2^2 \equiv \min \frac{1}{2} w^\top w$ .
- Denoting by  $A \in \mathbb{R}^{m \times n}$  the matrix storing rowwise the vectors  $x_i$ , by  $Y = diag(y_1, \dots, y_m)$ , and by e a vector of e 1's, the problem is formulated in compact matrix form as:

$$egin{array}{ll} \min_{({m w},\gamma)\in\mathbb{R}^{n+1}} & rac{1}{2}{m w}^{ op}{m w} \ & ext{s. to} & {m Y}({m A}{m w}+\gamma{m e})\geq{m e}. \end{array}$$

(Jordi Castro, UPC)

Optimization and SVMs

12/56

**SVM** formulations

SV Classifiers for linearly separable data

#### Example

For this AMPL data...

...we get this separation plane by solving the optimization problem



(Jordi Castro, UPC) Optimization and SVMs 13 / 56

# Modelling SVMs: linearly inseparable data, soft margin



• We consider artificial variables  $s_i \ge 0$ , i = 1, ..., m, named slacks, one for each point, to account for errors in the classification. The resulting constraints are named soft constraints:

$$y_i(\mathbf{w}^{\top} \mathbf{x}_i + \gamma) \geq 1 - \mathbf{s}_i \quad i = 1, \dots, m$$

Constraints impose:

$$w^{\top} x_i + \gamma + s_i \ge +1$$
, for  $y_i = +1$   
 $w^{\top} x_i + \gamma - s_i \le -1$ , for  $y_i = -1$ 

(Jordi Castro, UPC)

Optimization and SVMs

15 / 56

**SVM** formulations

SV Classifiers for linearly inseparable data: soft margin

#### The constrained quadratic optimization problem

- The objective is to maximize the margin, and at the same time to minimize the classification errors  $\sum_{i=1}^{m} s_i = e^{\top} s$ . These two opposite objectives are weighted by parameter  $\nu \in \mathbb{R}$ .
- The SVM is an optimization problem in variables  $w, \gamma, s$ :

$$\min_{\substack{(w,\gamma,s)\in\mathbb{R}^{n+1+m}\\ s. \text{ to } y_i(w^\top x_i+\gamma)+s_i\geq 1\\ s_i\geq 0}} \frac{1}{2}w^\top w+\nu\sum_{i=1}^m s_i$$

$$s_i\geq 0 \qquad \qquad i=1,\ldots,m$$

or equivalently in matrix form

$$egin{array}{ll} \min_{(w,\gamma,s)\in\mathbb{R}^{n+1+m}} & rac{1}{2}w^ op w + 
u e^ op s \ ext{s. to} & Y(Aw+\gamma e)+s\geq e \ s\geq 0 \end{array}$$

(Jordi Castro, UPC) Optimization and SVMs 16 / 56

### Example

For this AMPL data...

```
# Initial values for n, m and nu
param nu:=30;
param m:=8;
param n:=2;
# Generated y and A
param y :=
        1
  2
        1
  4
        -1
  8
param A :
              1
  1
  2
  3
           2
              3.5
  4
              4
  5
```

... we get this separation plane by solving the optimization problem



(Jordi Castro, UPC)

Optimization and SVMs

17 / 56

**SVM** formulations

SV Classifiers for linearly inseparable data: kernel trick

#### Input and feature spaces

- The space of the training set  $x \in X \subseteq \mathbb{R}^n$  is named input space.
- If data are linearly inseparable, we can consider a mapping function

$$\phi: X \subseteq \mathbb{R}^n \to F \subseteq \mathbb{R}^N$$

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad \phi(x) = \begin{pmatrix} \phi_1(x) \\ \vdots \\ \phi_N(x) \end{pmatrix}$$

- F is named feature space.
- The dimension of the input space is n. The dimension of the feature space is N. N can be different from n.
- We expect that using  $\phi(x)$  instead of x the SVM will perform better: the hyperplane will separate  $\phi(x)$  better than x.

(Jordi Castro, UPC) Optimization and SVMs 19 / 56

#### Input and feature spaces: examples

Case 
$$n = N = 2$$



Case 
$$3 = N > n = 2$$



(Jordi Castro, UPC)

Optimization and SVMs

20 / 56

**SVM** formulations

SV Classifiers for linearly inseparable data: kernel trick

#### SVM formulation in feature space

- Same formulation than in input space, replacing x by  $\phi(x)$ .
- The mapping only affects to input data, not to optimization model.
- Linearly separable case:

$$\min_{\substack{(w,\gamma)\in\mathbb{R}^{N+1}}} \quad \frac{1}{2}w^\top w$$
s. to  $y_i(w^\top\phi(x_i)+\gamma)\geq 1$   $i=1,\ldots,m$ 

Soft margin case:

$$\min_{\substack{(w,\gamma,s)\in\mathbb{R}^{N+1+m}\\ \text{s. to}}} \frac{1}{2}w^\top w + \nu \sum_{i=1}^m s_i$$
s. to  $y_i(w^\top \phi(x_i) + \gamma) + s_i \ge 1$   $i = 1, \dots, m$   $s_i \ge 0$   $i = 1, \dots, m$ 

(Jordi Castro, UPC) Optimization and SVMs 21 / 56

# Example in input space

For this AMPL data...

...we get this separation plane by solving the optimization problem





(Jordi Castro, UPC)

Optimization and SVM:

22 / 56

**SVM** formulations

SV Classifiers for linearly inseparable data: kernel trick

#### Example in feature space

For the previous data using the mapping

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
  $\phi(x) = \begin{pmatrix} \phi_1(x) \\ \phi_2(x) \end{pmatrix} = \begin{pmatrix} x_1 \\ \sqrt{x_2} \end{pmatrix}$ 

we get this separation plane by solving the optimization problem



(Jordi Castro, UPC) Optimization and SVMs 23 / 56

#### Definition of kernel

- Consider for simplicity the input space *X* is finite with *m* points:
- $X = \{x_1, \ldots, x_m\}, x_i \in \mathbb{R}^n, i = 1, \ldots, m.$
- The representation of  $x_i$  in the feature space is  $\phi(x_i)$ .
- If we formulate the dual problem of the primal SVM problem (to be seen later in the course) we will obtain inner products:

$$K_{ij} = K(x_i, x_j) = \phi(x_i)^{\top} \phi(x_j) = \sum_{l=1}^{N} \phi_l(x_i) \phi_l(x_j)$$
  $i, j = 1, \ldots, m$ 

#### **Definition**

A kernel is a function  $K: X \times X \to \mathbb{R}$  such that for all  $x, y \in X$ 

$$K(x, y) = \phi(x)^{\top} \phi(y)$$

where  $\phi$  is a mapping from the input space X to the (inner product) space F.

(Jordi Castro, UPC)

Optimization and SVM:

24 / 56

**SVM** formulations

SV Classifiers for linearly inseparable data: kernel trick

#### Some properties of kernels

• Kernels are symmetric functions:

$$K(x, y) = \phi(x)^{\top} \phi(y) = \phi(y)^{\top} \phi(x) = K(y, x)$$

• If X is finite with m points then we then get a symmetric matrix

$$K = (K(x_i, x_j))_{i,j=1,...,m} = (K_{ij})_{i,j=1,...,m} = K^{\top}$$

- The kernel can be seen a function that measures similarities between pairs of inputs in the feature space.
- If we have matrix K we even don't need to know the mapping  $\phi(x)$  (using the dual formulation of the SVM), even if  $N = \infty$ .
- The only requirement is that matrix K has to be positive semidefinite  $(K \succeq 0)$ .

(Jordi Castro, UPC) Optimization and SVMs 25 / 56

# $K \succeq 0$ is sufficient and necessary to be a kernel

#### **Proposition**

Let X be a finite input space  $X = \{x_1, \dots, x_m\}, x_i \in \mathbb{R}^n$ , and K(x, x') a symmetric function (K(x, x') = K(x', x)) on  $X \times X$ . Then K(x, x') is a kernel function if and only if the matrix

$$K = (K(x_i, x_j))_{i,j=1,...,m}$$

is positive semidefinite.

#### RBF or Gaussian kernel

 There are several available kernel functions, for instance the radial basis or Gaussian kernel:

$$K(x,y) = e^{-\frac{||x-y||^2}{\sigma^2}}$$

(Jordi Castro, UPC)

Optimization and SVMs

26 / 56

**SVM** formulations

Support vector regression

### Purpose of SV regression

- Given m points  $(x_i, y_i)$ , i = 1, ..., m, where  $x_i \in \mathbb{R}^n$ ,  $y \in \mathbb{R}$
- Find affine model  $y = \mathbf{w}^{\top} \mathbf{x} + \gamma$ ,  $\mathbf{w} \in \mathbb{R}^n$ ,  $\gamma \in \mathbb{R}$ , such that small errors  $(< \varepsilon)$  are neglected.

We consider two  $\varepsilon$ -insensitive loss functions:

•  $\varepsilon$ -insensitive linear function

ullet arepsilon-insensitive quadratic function

$$\begin{array}{ll} L_{1,\varepsilon} &= \max(0, |\boldsymbol{w}^{\top}\boldsymbol{x} + \gamma - \boldsymbol{y}| - \varepsilon) \\ &= \left\{ \begin{array}{ll} \boldsymbol{0} & \text{if } -\varepsilon \leq \boldsymbol{w}^{\top}\boldsymbol{x} + \gamma - \boldsymbol{y} \leq \varepsilon \\ |\boldsymbol{w}^{\top}\boldsymbol{x} + \gamma - \boldsymbol{y}| - \varepsilon & \text{otherwise} \end{array} \right.$$







(Jordi Castro, UPC)

Optimization and SVMs

### The SV regression models I

• In ideal situation all points  $(x_i, y_i)$  should be within distance  $\varepsilon$  of plane  $w^\top x + \gamma = y$ , that is:

$$-\varepsilon \leq (\mathbf{w}^{\top} \mathbf{x}_i + \gamma) - \mathbf{y}_i \leq \varepsilon \qquad i = 1, \dots, m$$

• Since this is not possible, we need slacks  $s_i^+ \ge 0$  and  $s_i^- \ge 0$  such that:

$$-s_i^- - \varepsilon \le (\mathbf{w}^\top \mathbf{x}_i + \gamma) - \mathbf{y}_i \le \varepsilon + s_i^+ \qquad i = 1, \dots, m$$



(Jordi Castro, UPC)

Optimization and SVMs

29 / 56

**SVM** formulations

Support vector regression

#### The SV regression models II

• The L<sub>1</sub> SV regression model:

$$\begin{aligned} & \min_{w,\gamma,s^+,s^-} & & \frac{1}{2} \|w\|_2^2 + \nu \sum_{i=1}^m (s_i^+ + s_i^-) \\ & \text{s. to} & & -s_i^- - \varepsilon \leq (w^\top x_i + \gamma) - y_i \leq \varepsilon + s_i^+ \quad i = 1, \dots, m \\ & & s_i^+ \geq 0, s_i^- \geq 0 \qquad \qquad i = 1, \dots, m \end{aligned}$$

• The L<sub>2</sub> SV regression model:

$$\begin{aligned} & \min_{\boldsymbol{w}, \gamma, s^+, s^-} & & \frac{1}{2} \| \boldsymbol{w} \|_2^2 + \nu \sum_{i=1}^m ((s_i^+)^2 + (s_i^-))^2 \\ & \text{s. to} & & -\boldsymbol{s}_i^- - \varepsilon \leq (\boldsymbol{w}^\top \boldsymbol{x}_i + \gamma) - \boldsymbol{y}_i \leq \varepsilon + \boldsymbol{s}_i^+ & i = 1, \dots, m \\ & & s_i^+ \geq 0, s_i^- \geq 0 & i = 1, \dots, m \end{aligned}$$

(Jordi Castro, UPC) Optimization and SVMs 30 / 56

# The SV regression models III

- Why term  $||w||_2^2$  is minimized (equivalent to maximize margin between planes)? Just a short explanation:
  - According to theory, the prediction error of  $w^{\top}x + \gamma = y$  decreases with  $||w||_2$ : the smaller  $||w||_2$ , the smaller the prediction error.
  - $\triangleright$   $\varepsilon$  is vertical distance between planes; ||w|| is associated to margin. For fixed  $\varepsilon$  we find planes with widest margin. Wider margins make more general the SVM and reduce overfitting.
  - ► The term  $||w||_2$  convexifies the problem: it guarantees a unique solution for  $L_1$ .

(Jordi Castro, UPC)

Optimization and SVM

31 / 56

**SVM** formulations

Support vector regression

#### The SV regression models IV



(Jordi Castro, UPC) Optimization and SVMs 32 / 56

### SVMs are convex optimization problems

#### **Definition**

The optimization problem

min 
$$f(x)$$
  
s. to  $x \in \Omega$ 

is convex if f is convex function and  $\Omega$  is convex set.

#### SVM most general formulation: soft margin in feature space

$$\min_{\substack{(w,\gamma,s)\in\mathbb{R}^{N+1+m}\\ s. \text{ to } y_i(w^\top\phi(x_i)+\gamma)+s_i\geq 1\\ s_i\geq 0}} \frac{1}{2}w^\top w+\nu\sum_{i=1}^m s_i$$

- The objective functions is convex quadratic.
- The feasible set is a convex polyhedron

(Jordi Castro, UPC)

Optimization and SVM:

34 / 56

Optimality conditions of SV classifiers

# Summary of necessary optimality conditions

Let

min 
$$f(x)$$
  
s. to  $h(x) = 0$   $[h_i(x) = 0 \ i = 1, ..., m]$   
 $g(x) \le 0$   $[g_j(x) \le 0 \ j = 1, ..., p]$ 

and its Lagrangian

$$L(x, \lambda, \mu) = f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x)$$

• Necessary conditions If  $x^*$  regular point and a local minimizer then there exist  $\lambda^* \in \mathbb{R}^m$  and  $\mu^* \in \mathbb{R}^p$  such that:

First-order conditions (KKT)

(i) 
$$h(x^*) = 0, g(x^*) \le 0$$

(ii) 
$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*, \mu^*) = \nabla f(\mathbf{x}^*) + \nabla h(\mathbf{x}^*) \lambda^* + \nabla g(\mathbf{x}^*) \mu^* = 0$$

(iii) 
$$\mu^* \ge 0$$
 and  $\mu^*^\top g(x^*) = 0$  (if  $g_j(x^*)$  is inactive then  $\mu_j^* = 0$ )   
Second-order conditions

(iv) 
$$d^{\top}\nabla^2_{xx}L(x^*,\lambda^*,\mu^*)d \geq 0$$
, for all  $d \in M = \{d : \nabla h(x^*)^{\top}d = 0, \nabla g_j(x^*)^{\top}d = 0 j \in A(x^*)\}.$ 

(Jordi Castro, UPC) Optimization and SVMs 36 / 56

#### Summary of sufficient optimality conditions

• Sufficient optimality conditions The point  $x^*$  is local minimizer if:

First-order conditions (KKT)

- (i)  $h(x^*) = 0, g(x^*) \le 0$
- (ii)  $\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*, \mu^*) = \nabla f(\mathbf{x}^*) + \nabla h(\mathbf{x}^*) \lambda^* + \nabla g(\mathbf{x}^*) \mu^* = 0$
- (iii)  $\mu^* \ge 0$  and  ${\mu^*}^\top g(x^*) = 0$  (if  $g_j(x^*)$  is inactive then  $\mu_j^* = 0$ ) Second-order conditions
- (iv)  $d^{\top} \nabla^2_{xx} L(x^*, \lambda^*, \mu^*) d > 0$ , for all  $d \in M' = \{d : \nabla h(x^*)^{\top} d = 0, \ \nabla g_j(x^*)^{\top} d = 0 \ j \in \mathcal{A}(x^*) \cap \{j : \mu_j^* > 0\}\}.$
- Necessary and sufficient conditions differ in:
  - No need x\* is regular;
  - condition (iv):

$$\begin{array}{ll} \textit{d}^{\top}\nabla^2_{\textit{xx}}\textit{L}(\textit{x}^*,\lambda,\mu)\textit{d}>0 & \textit{d}\in\textit{M}' \\ \textit{d}^{\top}\nabla^2_{\textit{xx}}\textit{L}(\textit{x}^*,\lambda,\mu)\textit{d}\geq0 & \textit{d}\in\textit{M} \end{array} \quad \begin{array}{ll} \text{[sufficient]} \\ \text{[necessary]} \end{array}$$

(Jordi Castro, UPC)

Optimization and SVM

37 / 56

Optimality conditions of SV classifiers

### Optimality conditions of convex problems

KKT conditions are sufficient and necessary also for convex problems, no need to check second order conditions

#### Theorem

Given

min 
$$f(x)$$
  
s.to  $h(x) = 0$   $[h_i(x) = 0 \ i = 1, ..., m]$   
 $g(x) \le 0$   $[g_i(x) \le 0 \ j = 1, ..., p]$ 

 $f, h, g \in C^1$ , f and  $g_j$  convex, and h(x) = Ax - b affine function. If first-order KKT conditions are satisfied at  $x^*$ , then  $x^*$  is a global optimum.

(Jordi Castro, UPC) Optimization and SVMs 38 / 56

#### The SVM formulation considered

#### SVM general formulation: soft margin in feature space

$$\min_{\substack{(w,\gamma,s)\in\mathbb{R}^{n+1+m}\\ \text{s. to}}} \frac{1}{2}w^\top w + \nu \sum_{i=1}^m s_i$$
s. to  $y_i(w^\top \phi(x_i) + \gamma) + s_i \ge 1$   $i = 1, \dots, m$ 

$$s_i \ge 0$$
  $i = 1, \dots, m$ 

Defining 
$$A = \begin{bmatrix} \phi(x_1)^\top \\ \vdots \\ \phi(x_m)^\top \end{bmatrix} \in \mathbb{R}^{m \times n}$$
,  $Y = \begin{bmatrix} y_1 & & & \\ & \ddots & & \\ & & y_m \end{bmatrix}$ , and  $e = \begin{bmatrix} 1_1 \\ \vdots \\ 1_m \end{bmatrix}$ :

#### SVM general formulation in matrix form

$$egin{array}{ll} \min_{(m{w}, \gamma, m{s}) \in \mathbb{R}^{n+1+m}} & rac{1}{2} m{w}^{ op} m{w} + 
u m{e}^{ op} m{s} \ \mathrm{s. to} & m{Y} (m{A}m{w} + \gamma m{e}) + m{s} \geq m{e} \ m{s} \geq 0 \end{array}$$

(Jordi Castro, UPC)

Optimization and SVMs

39 / 56

Optimality conditions of SV classifiers

#### Lagrange multipliers and Lagrangian function of SVM

• Standard form  $\min f(x)$  s. to  $g(x) \le 0$  and Lagrange multipliers:

$$\begin{array}{ll} \min_{\substack{(\boldsymbol{w},\gamma,\boldsymbol{s})\in\mathbb{R}^{n+1+m}}} & \frac{1}{2}\boldsymbol{w}^{\top}\boldsymbol{w}+\nu\boldsymbol{e}^{\top}\boldsymbol{s} \\ \text{s. to} & -Y(\boldsymbol{A}\boldsymbol{w}+\gamma\boldsymbol{e})-\boldsymbol{s}+\boldsymbol{e}\leq 0 & [\lambda\in\mathbb{R}^m] \\ & -\boldsymbol{s}\leq 0 & [\mu\in\mathbb{R}^m] \end{array}$$

Lagrangian function

$$L(w, \gamma, s, \lambda, \mu) = \frac{1}{2} w^{\top} w + \nu e^{\top} s + \lambda^{\top} (-Y(Aw + \gamma e) - s + e) + \mu^{\top} (-s)$$

$$= \frac{1}{2} \sum_{i=1}^{n} w_{i}^{2} + \nu \sum_{i=1}^{m} s_{i} + \sum_{i=1}^{m} \lambda_{i} (-y_{i} (\phi(x_{i})^{\top} w + \gamma) - s_{i} + 1) - \sum_{i=1}^{m} \mu_{i} s_{i}$$

(Jordi Castro, UPC) Optimization and SVMs 40 / 56

#### KKT optimality conditions of SVM

KKT conditions are necessary and sufficient (SVM is convex problem)

(i) 
$$Y(Aw + \gamma e) + s \ge e$$
,  $s \ge 0$ 

$$\nabla L() = 0$$

Primal feasibility
(i) 
$$Y(Aw + \gamma e) + s \ge e$$
,  $s \ge 0$ 

$$\nabla L() = 0$$
(ii.w)  $\nabla_w L() = w - (\lambda^\top YA)^\top = w - \sum_{i=1}^m \lambda_i y_i \phi(x_i) = 0$  (n equations)

$$(ii.\gamma) \quad \nabla_{\gamma} L() = -\lambda^{\top} Y e = -\sum_{i=1}^{m} \lambda_{i} y_{i} = 0$$

$$(ii.s) \quad \nabla_{s} L() = \nu e - \lambda - \mu = 0$$

$$(m \text{ equations})$$

(ii.s) 
$$\nabla_s L() = \nu e - \lambda - \mu = 0$$
 (m equations)

#### Complementarity

(iii.
$$\lambda$$
)  $\lambda_i \geq 0$ ,  $\lambda_i (y_i (\phi(x_i)^\top w + \gamma) + s_i - 1) = 0$   $i = 1, ..., m$   
(iii. $\mu$ )  $\mu_i \geq 0$ ,  $\mu_i s_i = 0$   $i = 1, ..., m$ 

(Jordi Castro, UPC)

41 / 56

The dual of the SV classifier

#### **Dual problem**

Primal problem

Lagrangian function:

$$L(x,\lambda,\mu) = f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x)$$

• Dual function  $q(\lambda, \mu)$  is

$$q(\lambda, \mu) = \min_{X} \quad L(X, \lambda, \mu)$$
  
 $X \in X$ 

Constraints h(x) = 0 and  $g(x) \le 0$  dualized, preserving  $x \in X$ . Depending what is dualized, different formulations obtained.

Dual problem

$$\max_{\lambda,\mu} \quad q(\lambda,\mu)$$
 $\mu \ge 0$ 

NOTE: although inf and sup preferred we will use min and  $\max q()$ .

(Jordi Castro, UPC) Optimization and SVMs 43 / 56

#### Dual problem: example

min 
$$x_1^2 + x_2^2$$
  
s.to  $x_1 + x_2 \ge 4$   $\equiv 4 - x_1 - x_2 \le 0$   
 $x_1 \ge 0, x_2 \ge 0$   $\equiv -x_1 \le 0, -x_2 \le 0$ 

Solution is  $x_1^* = x_2^* = 2$ ,  $f(x^*) = 8$ . Dual function is:

$$q(\mu) = \min_{x_1 \ge 0, x_2 \ge 0} x_1^2 + x_2^2 + \mu(4 - x_1 - x_2) = \min_{x_1 \ge 0, x_2 \ge 0} (x_1^2 - \mu x_1) + (x_2^2 - \mu x_2) + 4\mu$$

Problem is separable, with solution:

$$\left\{ \begin{array}{ll} x_1 = x_2 = 0 & \text{if } \mu < 0 & \text{since } x_i^2 - \mu x_i \geq 0 \\ x_1 = x_2 = \mu/2 & \text{if } \mu \geq 0 & \text{since solution of min } x_i^2 - \mu x_i \end{array} \right.$$

Then  $q(\mu)$  is the concave function:

$$q(\mu) = \left\{egin{array}{ll} 4\mu & \mu < 0 \ -\mu^2/2 + 4\mu & \mu \geq 0 \end{array}
ight.$$



Solution of dual problem  $\max_{\mu \geq 0} q(\mu)$  is  $\mu^* = 4$  and  $q(\mu^*) = f(x^*) = 8$ .

(Jordi Castro, UPC)

Optimization and SVMs

44 / 56

The dual of the SV classifier

### Some duality theorems

#### Theorem (Concavity of $q(\lambda, \mu)$ )

The dual function

$$q(\lambda, \mu) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \mu) = \min_{\mathbf{x} \in X} f(\mathbf{x}) + \lambda^{\top} h(\mathbf{x}) + \mu^{\top} g(\mathbf{x})$$

is concave (in the region where it is finite, that is, the minimum exists).

#### Theorem (Weak duality)

Let x be a feasible point of primal problem (i.e. h(x) = 0,  $g(x) \le 0$ ,  $x \in X$ ) and  $(\lambda, \mu)$  a feasible point of dual problem (i.e.,  $\mu \ge 0$ ), then

$$q(\lambda, \mu) \leq f(x)$$

#### Theorem (Strong duality)

If X is a convex set, f(x) and g(x) are convex functions, h(x) = Ax - b (affine function), under certain constraints qualifications (Slater condition) then:

$$q(\lambda^*, \mu^*) = f(x^*)$$

(Jordi Castro, UPC) Optimization and SVMs 45 / 56

### Wolfe duality

- Lagrangian duality does not require differentiability. Wolfe duality assumes differentiability.
- If f(x), h(x) and g(x) are convex and differentiable functions, a necessary and sufficient condition of optimality of the dual function

$$q(\lambda,\mu)=\min_{x}L(x,\lambda,\mu)$$

is

$$\nabla_X L(X, \lambda, \mu) = 0$$

The dual problem

$$\max_{\lambda,\mu} \quad q(\lambda,\mu) \\ \mu > 0$$

can thus be recast as

$$\max_{x,\lambda,\mu} L(x,\lambda,\mu)$$

$$\nabla_x L(x,\lambda,\mu) = 0$$

$$\mu > 0$$

This allows a simpler formulation of some problems: LP, QP

(Jordi Castro, UPC)

Optimization and SVM

46 / 56

#### The dual of the SV classifier

#### SVM formulation in standard form

Defining 
$$A = \begin{bmatrix} \phi(x_1)^\top \\ \vdots \\ \phi(x_m)^\top \end{bmatrix} \in \mathbb{R}^{m \times n}$$
,  $Y = \begin{bmatrix} y_1 & & & \\ & \ddots & & \\ & & y_m \end{bmatrix}$ , and  $e = \begin{bmatrix} 1_1 \\ \vdots \\ 1_m \end{bmatrix}$ :

#### SVM in matrix standard form with Lagrange multipliers

$$egin{array}{ll} \min_{(w,\gamma,s)\in\mathbb{R}^{n+1+m}} & rac{1}{2}w^ op w + 
u e^ op s \ ext{s. to} & -Y(Aw+\gamma e)-s+e \leq 0 & [\lambda\in\mathbb{R}^m] \ -s \leq 0 & [\mu\in\mathbb{R}^m] \end{array}$$

#### Lagrangian function

$$L(w, \gamma, s, \lambda, \mu) = \frac{1}{2} w^{\top} w + \nu e^{\top} s + \lambda^{\top} (-Y(Aw + \gamma e) - s + e) - \mu^{\top} s$$

$$= \frac{1}{2} \sum_{i=1}^{n} w_{i}^{2} + \nu \sum_{i=1}^{m} s_{i} + \sum_{i=1}^{m} \lambda_{i} (-y_{i}(\phi(x_{i})^{\top} w + \gamma) - s_{i} + 1) - \sum_{i=1}^{m} \mu_{i} s_{i}$$

(Jordi Castro, UPC) Optimization and SVMs 47 / 56

### Dual problem formulation (I)

#### SVM dual problem

$$\begin{array}{ll} \max\limits_{\boldsymbol{w},\gamma,\boldsymbol{s},\lambda,\mu} & L(\boldsymbol{w},\gamma,\boldsymbol{s},\lambda,\mu) \\ \nabla_{\boldsymbol{w}}L(\boldsymbol{w},\gamma,\boldsymbol{s},\lambda,\mu) &= 0 & n \text{ constraints} \\ \nabla_{\gamma}L(\boldsymbol{w},\gamma,\boldsymbol{s},\lambda,\mu) &= 0 & 1 \text{ constraint} \\ \nabla_{\boldsymbol{s}}L(\boldsymbol{w},\gamma,\boldsymbol{s},\lambda,\mu) &= 0 & m \text{ constraints} \\ \lambda \geq 0, & \mu \geq 0 & \end{array}$$

#### Detailed SVM dual problem

$$\begin{array}{ll} \max\limits_{\boldsymbol{w},\gamma,\boldsymbol{s},\lambda,\mu} & \frac{1}{2}\boldsymbol{w}^{\top}\boldsymbol{w} + \nu\boldsymbol{e}^{\top}\boldsymbol{s} + \lambda^{\top}(-\boldsymbol{Y}(\boldsymbol{A}\boldsymbol{w} + \gamma\boldsymbol{e}) - \boldsymbol{s} + \boldsymbol{e}) - \mu^{\top}\boldsymbol{s} \\ & \boldsymbol{w} - (\lambda^{\top}\boldsymbol{Y}\boldsymbol{A})^{\top} &= 0 \\ & \lambda^{\top}\boldsymbol{Y}\boldsymbol{e} &= 0 \\ & \nu\boldsymbol{e} - \lambda - \mu &= 0 \\ & \lambda \geq 0, \ \mu \geq 0 \end{array}$$

(Jordi Castro, UPC)

Optimization and SVMs

48 / 56

#### The dual of the SV classifier

#### Dual problem formulation (II)

Replacing  $w = (\lambda^{\top} YA)^{\top}$  in the objective we get (details in the blackboard)

$$\begin{array}{ll} \max_{\lambda,\mu} & \lambda^\top e - \frac{1}{2} \lambda^\top \mathit{YAA}^\top \mathit{Y}\lambda \\ & \lambda^\top \mathit{Ye} &= 0 \\ & \nu e - \lambda - \mu &= 0 \\ & \lambda \geq 0, \ \mu \geq 0 \end{array}$$

Using  $\mu \ge 0$  and  $\mu = \nu e - \lambda$  we finally have the QP (convex because matrix  $AA^{\top} = K \succeq 0$ ):

#### Dual of SVM (matrix form)

$$\max_{\lambda} \quad \lambda^\top e - \frac{1}{2} \lambda^\top Y A A^\top Y \lambda$$
$$\lambda^\top Y e = 0$$
$$0 \le \lambda \le \nu$$

#### Dual of SVM (scalar form)

$$\max_{\lambda} \sum_{i=1}^{m} \lambda_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_i y_i \lambda_j y_j K_{ij}$$
$$\sum_{i=1}^{m} \lambda_i y_i = 0$$
$$0 \le \lambda_i \le \nu \quad i = 1, \dots, m$$

(Jordi Castro, UPC) Optimization and SVMs 49 / 56

# Retrieving normal vector w from the dual solution $\lambda$

• From  $w = A^{\top} Y \lambda$  we have

$$\mathbf{w} = \sum_{i=1}^{m} \lambda_i \mathbf{y}_i \phi(\mathbf{x}_i)$$

- Considering the partition (*MC*, *SV*, *NB*) of points {1,..., *m*}:
  - ▶  $MC \subseteq \{1, ..., m\}$ : set of misclassified points.
  - ►  $SV \subseteq \{1, ..., m\}$ : set of support vectors (on planes  $w^T x + \gamma = \pm 1$ ).
  - ▶  $NB = \{1, ..., m\} \setminus (MC \cup SV)$ : non-binding points.

it can be shown that

$$\begin{cases} s_i > 0, \ \lambda_i = \nu & \text{if } i \in MC \\ s_i = 0, \ \lambda_i \geq 0 & \text{if } i \in SV \\ s_i = 0, \ \lambda_i = 0 & \text{if } i \in NB \end{cases}$$

and then

$$w = \sum_{i=1}^{m} \lambda_i y_i \phi(x_i) = \sum_{i \in MC} \nu y_i \phi(x_i) + \sum_{i \in SV} \lambda_i y_i \phi(x_i)$$

(Jordi Castro, UPC)

Optimization and SVMs

50 / 56

#### The dual of the SV classifier

### Retrieving "intercept" $\gamma$ from the dual solution $\lambda$

We have to compute  $\gamma$  of  $\mathbf{w}^{\top}\mathbf{x} + \gamma = \pm 1$ . This is the procedure:

- Choose some point  $x_i$  such that  $s_i = 0$  and  $\lambda_i > 0$  (that is,  $i \in SV$ ).
- Since  $x_i$  is a support vector we know that

$$y_i(w^{\top}\phi(x_i) + \gamma) - 1 = 0$$
  $y_i = \pm 1$ 

• Then we compute  $\gamma$  as

$$\gamma = \frac{1}{y_i} - \mathbf{w}^{\top} \phi(\mathbf{x}_i).$$

(Jordi Castro, UPC) Optimization and SVMs 51 / 56

# Best SVM packages in machine learning community

#### LIBSVM for linear/nonlinear kernels

- Solves the dual SVM formulation, with several kernels (e.g. Gaussian)
- Uses the SMO algorithm, specific for the dual SVM problem.

#### LIBLINEAR for linear kernels

- Transforms the problem to a "similar" unconstrained one without  $\gamma$ .
- It either solves the primal

$$\min_{w} \frac{1}{2} w^{\top} w + \nu \sum_{i=1}^{m} \max(0, 1 - y_{i} w^{\top} x_{i})^{2}$$

or the dual

$$\label{eq:local_equation} \begin{array}{ll} \max_{\lambda} & \lambda^\top e - \frac{1}{2} \lambda^\top \mathit{YAA}^\top \mathit{Y\lambda} \\ & 0 \leq \lambda \leq \nu \end{array}$$

using a trust-region CG Newton method or a coordinate descent algorithm.

Meaning of optimality tolerances different (looser) than with other approaches.

(Jordi Castro, UPC)

Optimization and SVMs

53 / 56

Some software for SVMs

#### Example libsvm/liblinear: gender recognition by face



(Jordi Castro, UPC) Optimization and SVMs 54 / 56

# **Bibliography**

- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, *Nonlinear Programming. Theory and Algorithms, 3rd Ed.*, Wiley, 2006.
- D.P. Bertsekas, *Nonlinear Programming, 2nd Ed.*, 1999, Athena Scientific, Belmont, USA.
- N. Cristianini, J. Shawe-Taylor, *An Introduction to Support Vector Machines and other kernel-based learning methods*, 2000, Cambridge University Press, Cambridge, UK.
- D.G. Luenberger, Y. Ye., *Linear and Nonlinear Programming, 4th Ed.*, 2016, Springer, New York, USA.
- J. Nocedal, S.J. Wright, *Numerical Optimization, 2nd Ed.*, 2006, Springer, New York, USA.

(Jordi Castro, UPC) Optimization and SVMs 56 / 56