

Mathematical Optimization in Data Science

Emilio Carrizosa

Instituto de Matemáticas de la Universidad de Sevilla Lleida, 5th July 2019

www.grupo.us.es/gioptim

- Sandra Benítez-Peña
- Rafael Blanquero
- Vanesa Guerrero
- M. Asunción Jiménez-Cordero
- Belén Martín-Barragán
- Cristina Molero-Río
- Alba V Olivares-Nadal
- Pepa Ramírez-Cobo
- Dolores Romero Morales
- Remedios Sillero-Denamiel

www.riseneeds.eu @ needs_project

www.imus.us.es/eps-data-optimization

About Scientific Committee Organizing Committee

EURO PHD SCHOOL ON DATA DRIVEN DECISION MAKING AND OPTIMIZATION

10-19 July 2020, Institute of Mathematics of the University of Seville

Visualization

Iris Data

Winsconsin Breast Cancer Data

		10	4	500	0.0	05	0.00)	0.05		1		0	0.	00	0	00	0.0	000		20	10	00	0.	0	0.0	0	0.0	5	
	ø				• 1						ē.		5	•	•	•	5	•		•		•						• •	1	₽
10	-	D	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•							•	
8	2	2						1	2	2	2	2	2	2			2		2	:	2									8
5				•								•				•		•		•		•							-	8
0.05	-	•	•	•	•	8	•	•	•	•	•	•	•	•		•		•		•		•						•	•	0
8	2	1	2	:				1	1	2	2	2	2	1		:	2	:	2	2	2									0.0
ö	-		1																	•										9
0.05	-	•	•	•	•	•	•	•	۵	•	•	•	•	•	•	•	•	•	•	•	•	•		•				•		0
	-		1					1	1		•	1	1							•										0.5
-	Ξ.	2	2					5	5	5			;				2		2		2									
0	-	•	•	•	•	•	•		•		•	•	a	•	•	•	•	•	•	•	•	•	•							
~	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•		000
0.0	Ξ.	2	2	2				1	2	2	2	2	2	2			2	2	2	2	2									
8	-	-	2					-	-	5	-	5	-			•	œ	•		•									Γ.	ö
0		•	•	•	•		•		٠		•	•	•	•	•	•	•	æ	•	•	•	•	•					•	-	0.01
0.0	•	1	2	2				1	1	2	2	2	2				2			•									<u>.</u>	_
8	-	2	2	Ξ.				4	2	2	2	2	2	Ξ.			2		2										Ξ.	ž
		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	0	•		•					3
1000	1		1	•					1	2	•	•	•		•	•		•		•		•							•	0
Q	2	2	2					2	1	1	2	1	2	2			2		2		2									9
0																•		•		•		•							-	2
0.00	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					•	•	•	
12	2	2	1	2				1	1	2	1	2	1	2	2	2	2	:	2	2	2							3		0.0
0	10	1	1 50	0.	06	0.	0	0.10	٦,	0.5	7	0	0	.005	- 0	0.0	0	01	Ξ.	10	5	0	0,1	10	0.	0	0.	2	·	

 Principal Component Analysis (PCA): way of projecting properly a data set ⊂ ℝ^d into an affine space of smaller dimension

Pearson. On Lines and Planes of Closest Fit to Systems of Points in Space. *Philosophical Magazine*, 1901

(y') being the ordinate of the theoretical line at the point x which corresponds to y, had we wanted to determine the best-fitting line in the usual manner.

• We're given
$$\{u_1, \ldots, u_N\} \subset \mathbb{R}^d$$
, wlog, $\frac{1}{N} \sum_{i=1}^N u_i = 0_d$

• We're given
$$\{u_1, \ldots, u_N\} \subset \mathbb{R}^d$$
, wlog, $\frac{1}{N} \sum_{i=1}^N u_i = 0_d$

• Seeking orthonormal c_1, \ldots, c_k s.t. $u_i \approx \pi_{\{c_1, \ldots, c_k\}}(u_i) \quad \forall i = 1, 2, \ldots, N:$

$$\min_{c_1,...,c_k: \text{ orthonormal }} \frac{1}{N} \sum_{i=1}^N \left\| u_i - \pi_{\{c_1,...,c_k\}}(u_i) \right\|^2$$

• We're given
$$\{u_1, \ldots, u_N\} \subset \mathbb{R}^d$$
, wlog, $\frac{1}{N} \sum_{i=1}^N u_i = 0_d$

• Seeking orthonormal c_1, \ldots, c_k s.t. $u_i \approx \pi_{\{c_1, \ldots, c_k\}}(u_i) \quad \forall i = 1, 2, \ldots, N:$

$$\min_{c_1,...,c_k: \text{ orthonormal }} \frac{1}{N} \sum_{i=1}^N \left\| u_i - \pi_{\{c_1,...,c_k\}}(u_i) \right\|^2$$

- $V := \frac{1}{N} (u_1 | u_2 | \dots | u_N) \cdot (u_1 | u_2 | \dots | u_N)^\top$ (covariance matrix), an sdp matrix
- Problem equivalent to

min
$$\frac{1}{N} \sum_{i=1}^{N} \|u_i\|^2 - \frac{1}{N} \sum_{j=1}^{k} c_j^\top \cdot V \cdot c_j$$
$$c_i^\top c_j = \delta_{ij} \quad \forall i, j = 1 \dots k$$

• We're given
$$\{u_1, \ldots, u_N\} \subset \mathbb{R}^d$$
, wlog, $\frac{1}{N} \sum_{i=1}^N u_i = 0_d$

• Seeking orthonormal c_1, \ldots, c_k s.t. $u_i \approx \pi_{\{c_1, \ldots, c_k\}}(u_i) \quad \forall i = 1, 2, \ldots, N:$

$$\min_{c_1,...,c_k: \text{ orthonormal }} \frac{1}{N} \sum_{i=1}^N \left\| u_i - \pi_{\{c_1,...,c_k\}}(u_i) \right\|^2$$

- $V := \frac{1}{N} (u_1 | u_2 | \dots | u_N) \cdot (u_1 | u_2 | \dots | u_N)^\top$ (covariance matrix), an sdp matrix
- Problem equivalent to

$$\frac{1}{N} \sum_{i=1}^{N} \left\| u_i \right\|^2 \quad - \quad \max_{i \in I} \frac{1}{N} \sum_{j=1}^{k} c_j^\top \cdot V \cdot c_j$$
$$c_i^\top c_j = \delta_{ij} \quad \forall i, j = 1 \dots k$$

$$\min \quad \frac{1}{N} \sum_{i=1}^{N} \left\| u_i \right\|^2 - \frac{1}{N} \sum_{j=1}^{k} c_j^\top \cdot V \cdot c_j$$
$$c_i^\top c_j = \delta_{ij} \quad \forall i, j = 1 \dots k$$

Calculating principal components

• Optimal c_1, c_2, \ldots, c_k : unit eigenvectors associated with the k largest eigenvalues of the sdp matrix V

Sparse PCA. A few references

- d'Aspremont, A., El Ghaoui, L., Jordan, M., and Lanckriet, G. "A Direct Formulation for Sparse PCA Using Semidefinite Programming", *SIAM Review*, 2007.
- Carrizosa, E., and Guerrero, V. "Biobjective Sparse Principal Component Analysis". *Journal of Multivariate Analysis*, 2014.
- Carrizosa, E., and Guerrero, V. "rs-Sparse principal component analysis: A mixed integer nonlinear programming approach with VNS". Computers & Operations Research, 2014.
- Jolliffe, I.T., N. T. Trendafilov and M. Uddin. "A Modified Principal Component Technique Based on the LASSO", *J. of Computational and Graphical Statistics*, 2003.
- Krauthgamer, R., Nadler, .B., and Vilenchik, D. "Do semidefinite relaxations solve sparse PCA up to the information limit?", *The Annals of Statistics*, 2015
- Ma, Z. "Sparse principal component analysis and iterative thresholding". *Annals of Statistics*, 2013.
- McCabe, G. P. "Principal Variables", Technometrics, 26, 1984.
- Vines, S. K. "Simple Principal Components", Applied Statistics, 2000.
- Zou, H., T. Hastie and R. Tibshirani. "Sparse Principal Component Analysis", J. of Computational and Graphical Statistics, 2006.

PCA

min
$$\frac{1}{N} \sum_{i=1}^{N} \left\| u_i - \pi_{\{c_1, \dots, c_k\}}(u_i) \right\|^2$$

 c_1, \dots, c_k : orthonormal

Sparse PCA

min
$$\frac{1}{N} \sum_{i=1}^{N} \left\| u_i - \pi_{\{c_1, \dots, c_k\}}(u_i) \right\|^2$$

$$c_1, \dots, c_k : \text{ orthonormal}$$

$$+ \text{ global sparsity constraints:}$$

Sparse PCA

min
$$\frac{1}{N} \sum_{i=1}^{N} \left\| u_i - \pi_{\{c_1, \dots, c_k\}}(u_i) \right\|^2$$

$$c_1, \dots, c_k : \text{ orthonormal}$$

$$+ \text{ global sparsity constraints:}$$

Global sparsity constraints

• Each variable is nonzero in at most r components c_j

Hard constraints

Sparse PCA

min
$$\frac{1}{N} \sum_{i=1}^{N} \left\| u_i - \pi_{\{c_1, \dots, c_k\}}(u_i) \right\|^2$$

$$c_1, \dots, c_k : \text{ orthonormal}$$

$$+ \text{ global sparsity constraints:}$$

Global sparsity constraints

- Each variable is nonzero in at most r components c_j
- 2 Each c_j has at most s nonzero elements

Hard constraints

Define:
$$z_{il} = \begin{cases} 1 & \text{if } c_{il} \neq 0 \\ 0 & \text{else} \end{cases}$$
 $i = 1 \dots k, l = 1 \dots d$

Define:
$$z_{il} = \begin{cases} 1 & \text{if } c_{il} \neq 0 \\ 0 & \text{else} \end{cases}$$
 $i = 1 \dots k, l = 1 \dots d$

 $|c_{il}| \leq z_{il} \qquad \forall i, l$

Define:
$$z_{il} = \begin{cases} 1 & \text{if } c_{il} \neq 0 \\ 0 & \text{else} \end{cases}$$
 $i = 1 \dots k, l = 1 \dots d$

$$|c_{il}| \le z_{il} \qquad \forall i, l$$

$$\sum_{i=1}^{k} z_{il} \le r \quad \forall l = 1 \dots d$$

Define:
$$z_{il} = \begin{cases} 1 & \text{if } c_{il} \neq 0 \\ 0 & \text{else} \end{cases}$$
 $i = 1 \dots k, l = 1 \dots d$

$$|c_{il}| \le z_{il} \qquad \forall i, l$$

$$\sum_{i=1}^{k} z_{il} \le r \quad \forall l = 1 \dots d$$

$$\sum_{l=1}^{d} z_{il} \le s \quad \forall i = 1 \dots k$$

$$\min \quad \frac{1}{N} \sum_{i=1}^{N} \left\| u_{i} - \pi_{\{c_{1},...,c_{k}\}}(u_{i}) \right\|^{2} \\ c_{i}^{\top} c_{j} = \delta_{ij} \qquad \forall i, j \\ |c_{il}| \leq z_{il} \qquad \forall i, l \\ \sum_{i=1}^{k} z_{il} \leq r \qquad \forall l = 1 \dots d \\ \sum_{l=1}^{n} z_{il} \leq s \qquad \forall i = 1 \dots k \\ z_{il} \in \{0, 1\} \qquad \forall i, l$$

max

$$\begin{array}{lll} & \sum_{j=1}^{k} c_{j}^{\top} \cdot V \cdot c_{j} \\ & c_{i}^{\top} c_{j} = \delta_{ij} \\ & |c_{il}| \leq z_{il} \\ & \sum_{i=1}^{k} z_{il} \leq r \\ & \sum_{l=1}^{k} z_{il} \leq s \\ & z_{il} \in \{0,1\} \end{array} \quad \forall i, l \end{array}$$

max

$$\begin{aligned} & \sum_{j=1}^{k} c_{j}^{\top} \cdot V \cdot c_{j} \\ & c_{i}^{\top} c_{j} = \delta_{ij} \\ & |c_{il}| \leq z_{il} \\ & \sum_{i=1}^{k} z_{il} = 1 \\ & \sum_{l=1}^{k} z_{il} = s \\ & z_{il} \in \{0, 1\} \end{aligned} \qquad \begin{aligned} & \forall i, j \\ & \forall i, l \\ & \forall l = 1 \dots d \\ & \forall i = 1 \dots k \end{aligned}$$

 \max

$$\begin{array}{lll} \mathbf{x} & \sum_{j=1}^{k} c_{j}^{\top} \cdot V \cdot c_{j} \\ & \mathbf{c}_{i}^{\top} \mathbf{c}_{i} = \mathbf{1} & \forall i \\ & |c_{il}| \leq z_{il} & \forall i, l \\ & \sum_{i=1}^{k} z_{il} = \mathbf{1} & \forall l = 1 \dots d \\ & \sum_{l=1}^{n} z_{il} = s & \forall i = 1 \dots k \\ & z_{il} \in \{0, 1\} & s \forall i, l \end{array}$$

$$\begin{array}{ll} \max & \sum_{i=1}^{k} c_{j}^{\top} \cdot V \cdot c_{j} \\ & c_{i}^{\top} c_{i} = 1 & \forall i \\ & |c_{il}| \leq z_{il} & \forall i, l \\ & \sum_{i=1}^{k} z_{il} = 1 & \forall l = 1 \dots d \\ & \sum_{l=1}^{n} z_{il} = s & \forall i = 1 \dots k \\ & z_{il} \in \{0, 1\} & \forall i, l \end{array}$$

$$\begin{array}{ll} \max & \sum_{j=1}^{k} c_{j}^{\top} \cdot V \cdot c_{j} \\ & c_{i}^{\top} c_{i} = 1 \\ & c_{il} = 0 \end{array} \quad \quad \forall i \\ & \forall i, l : z_{il} = 0 \end{array}$$

$$\begin{array}{ll} \max & \sum_{j=1}^{k} c_{j}^{\top} \cdot V \cdot c_{j} \\ & c_{i}^{\top} c_{i} = 1 \\ & c_{il} = 0 \end{array} \quad \quad \forall i \\ \forall i, l : z_{il} = 0 \end{array}$$

Resulting problem ...

• Separable in k problems (of classical PCA-type)

$$\begin{array}{ll} \max & \sum_{j=1}^{k} c_{j}^{\top} \cdot V \cdot c_{j} \\ & c_{i}^{\top} c_{i} = 1 \\ & c_{il} = 0 \end{array} \quad \quad \forall i \\ \forall i, l : z_{il} = 0 \end{array}$$

Resulting problem ...

- Separable in k problems (of classical PCA-type)
- \bullet Amounts to solving largest eigenvalue and associated eigenvector of k submatrices of V

A heuristic

- 0 "Judiciously" choose z
- **②** Find the optimal c of z fixed (by calculating k eigenvalues and eigenvectors)

A heuristic

- 0 "Judiciously" choose z
- **②** Find the optimal c of z fixed (by calculating k eigenvalues and eigenvectors)

Choosing z

- Easily available: c_1^*, \ldots, c_k^* , principal components
- Controlled rounding of c_1^*, \ldots, c_k^* :

A heuristic

- 0 "Judiciously" choose z
- **②** Find the optimal c of z fixed (by calculating k eigenvalues and eigenvectors)

Choosing z

- Easily available: c_1^*, \ldots, c_k^* , principal components
- Controlled rounding of c_1^*, \ldots, c_k^* :

$$\max \begin{array}{ll} \sum_{i=1}^{d} \sum_{l=1}^{k} |c_{il}^{*}| z_{il} \\ \sum_{l=1}^{k} z_{il} = 1 \\ \sum_{i=1}^{n} z_{il} \leq s \\ \sum_{i=1}^{n} z_{il} \geq 1 \\ z_{il} \geq 0 \end{array} \quad \forall l = 1, \dots, k \\ \forall l = 1, \dots, k \\ \forall l = 1, \dots, k \\ \forall l = 1, \dots, k \end{cases}$$

The limits of PCA

(y' being the ordinate of the theoretical line at the point x which corresponds to y), had we wanted to determine the best-fitting line in the usual manner.

• Input: data coordinates in \mathbb{R}^d
The limits of PCA

(y') being the ordinate of the theoretical line at the point x which corresponds to y), had we wanted to determine the best-fitting line in the usual manner.

- Input: data coordinates in \mathbb{R}^d
- PCA output may not properly reflect proximities

The limits of PCA

(y') being the ordinate of the theoretical line at the point x which corresponds to y), had we wanted to determine the best-fitting line in the usual manner.

- Input: data coordinates in \mathbb{R}^d
- PCA output may not properly reflect proximities
- Not (directly applicable) when e.g.
 - Coordinates missing
 - Input is not Euclidean, and a disimilarity is given instead

The limits of PCA

(g' leing the ardinate of the theoretical line at the point which corresponds to g), had we wanted to determine the best-fitting line in the usual manner. $\frac{2^{n-2}}{r}$

- Input: data coordinates in \mathbb{R}^d
- PCA output may not properly reflect proximities
- Not (directly applicable) when e.g.
 - Coordinates missing
 - Input is not Euclidean, and a disimilarity is given instead

V:	v_1, v_2, \ldots, v_N
	$\begin{pmatrix} 0 & \delta_{12} & \cdots & \delta_{1N} \end{pmatrix}$
~	$\delta_{21} 0 \cdots \delta_{2N}$
ð :	
	$\left(\delta_{N1} \delta_{N2} \cdots 0 \right)$

set	of	N	individuals	1

V:	v	$_{1}, v_{2}, .$	\ldots, v_i	N	
	$\begin{pmatrix} 0 \end{pmatrix}$	δ_{12}	• • •	δ_{1N}	
-	δ_{21}	0	• • •	δ_{2N}	
ð :	:	÷	·	÷	
	δ_{N1}	δ_{N2}	• • •	0)

set of N individuals	V:	v_1, v_2, \ldots, v_N
dissimilarities	δ:	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$

Kruskal. Psychometrika, 1964

• $v_i \mapsto c_i \in \mathbb{R}^n$

•
$$v_i \mapsto c_i \in \mathbb{R}^n$$

•
$$\|\boldsymbol{c}_i - \boldsymbol{c}_j\|\delta_{ij} \,\forall i, j$$

- $v_i \mapsto c_i \in \mathbb{R}^n$
- $\|\boldsymbol{c}_i \boldsymbol{c}_j\|\delta_{ij} \forall i, j$
- $\min_{c_1,...,c_N} \sum_{i,j} (\|c_i c_j\|^2 \delta_{ij}^2)^2$
 - Unconstrained optimization with smooth function
 - Highly multimodal when δ stongly violates triangle inequality

V:	v_1	$, v_2, .$	\ldots, v_I	V								
ω :	$\omega_1, \omega_2, \ldots, \omega_N$											
δ:	$ \left(\begin{array}{c} 0\\ \delta_{21}\\ \vdots\\ \delta_{N1} \end{array}\right) $	$\delta_{12} \\ 0 \\ \vdots \\ \delta_{N2}$	···· ··· ··.	$ \begin{array}{c} \delta_{1N} \\ \delta_{2N} \\ \vdots \\ 0 \end{array} \right) $								
Ω :												

set of N individuals

V:	v_1, v_2, \ldots, v_N
ω :	$\omega_1,\omega_2,\ldots,\omega_N$
δ:	$\begin{pmatrix} 0 & \delta_{12} & \cdots & \delta_{1N} \\ \delta_{21} & 0 & \cdots & \delta_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_{N1} & \delta_{N2} & \cdots & 0 \end{pmatrix}$
Ω :	

set of N individuals statistical values

V:	v_1, v_2, \ldots, v_N											
ω :	$\omega_1,\omega_2,\ldots,\omega_N$											
δ:	$ \left(\begin{array}{ccccc} 0 & \delta_{12} & \cdots & \delta_{1N} \\ \delta_{21} & 0 & \cdots & \delta_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_{N1} & \delta_{N2} & \cdots & 0 \end{array}\right) $											
Ω :												

MDS with objects. Proportions

C., Guerrero-Lozano, Romero Morales. Computers & OR, 2017; EJOR, 2018

-																				-
n	n	f	f	f	f	f	f	с	с	с	с	с	с	mi	mi	mi	mi	mi	mi	
n	n	f	f	f	f	f	f	f	f	с	с	с	с	mi	mi	mi	mi	mi	mi	
n	n	f	f	f	f	f	f	f	f	с	с	с	с	mi	mi	d	d	ma	ma	
n	n	f	f	f	f	f	f	f	f	с	с	с	mi	mi	d	d	d	ma	ma	
n	n	f	f	f	f	f	f	f	f	с	с	с	mi	mi	d	d	d	d	ma	
n	n	n	f	f	f	f	f	f	f	с	с	с	mi	d	d	d	d	d	ma	
n	n	n	f	f	f	f	f	f	f	с	с	mi	mi	d	d	d	d	d	ma	b->brus (Bruselas)
n	n	n	n	v	v	v	f	f	f	mi	mi	mi	d	d	d	d	d	d	ma	c->cbs (Amsterdam)
n	n	n	n	n	n	v	v	ь	f	f	f	f	d	d	d	d	d	d	ma	 d->dax (Frankfurt) f->ftse (London)
n	n	n	n	n	n	n	v	ь	ь	b	b	f	f	d	d	d	d	d	ma	h->hs (Hong Kong)
n	n	n	n	n	n	n	v	v	v	v	b	ь	f	d	d	d	d	d	ma	ma->madrid (Madrid
n	n	n	n	n	n	n	n	n	n	v	v	ь	f	f	f	f	f	d	ma	n–>nikkei (Tokio)
n	n	n	n	n	n	n	n	n	n	n	n	n	f	f	f	f	f	d	ma	s->sing (Singapore)
n	n	n	n	n	n	n	n	n	n	n	n	n	f	f	f	f	f	f	f	t->taiwan (Taiwan)
n	n	n	n	n	n	n	n	n	n	n	n	h	h	f	1	1	1	1	1	- v->vec (Stockholm)
			<u> </u>			<u> </u>			<u> </u>	<u> </u>			-	-	-	-				
n	n	n	n	n	n	n	n	n	n	n	n	h	h	f	f	f	f	f	f	
n	n	n	n	n	n	n	n	n	n	n	n	h	h	h	h	h	f	f	f	
s	n	n	n	n	n	n	n	n	n	n	h	h	h	h	h	h	h	f	f	
s	n	n	n	n	n	n	n	n	n	n	h	h	h	h	h		t	f	f	
s	n	n	n	n	n	n	n	n		t	t	t	t	t	t	t	t	f	f	

t t <th></th> <th></th> <th>-</th> <th></th>			-																			
t t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t		
a h	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	•	а
a a b b b b b b b c a a b b b b b b c a a a b b b b b b b b b b b b b b b c a a a b b b b c c a a b b b b c c a a b b b c c c a a b b b c c c a a a b b b c c c c a a a c c c c a a a c c c c c a a a c c c c c a a a c c c c c a a a c c c c	а	а	h	h	h	h	h	h	h	h	h	h	h	i.	i.	t	t	t	t	t		b
a a a a a a a a a b c c c m			h	h	h	h	h	h	h						-							c d
a a b b b b b b c a a a b b b b c a a a b b b b a a a b b b a a a b b b a a a a b b b a a a b b b a a a b b b a a a a b b b a a a a b b b a a a a b b b a a a a b b b a	a	a								<u> </u>	ļ.							Ľ.	•	•		e
a b b b i	а	а	h	h	h	h	h	1	<u> </u>	1	c	m	m	m	m	р	t	t	t	t	•	f
a h h b 1	а	а	h	h	h	h	i -	i.	i.	1	с	m	m	m	р	р	t	t	t	t		g
a a b	а	а	h	h	b	i -	i.	i.	i.	i.	с	m	m	р	р	r	r.	r.	t	t		h
a a b b b b b b b c c m n y y u d t	а	а	8	ь	ь	b					_	m	m	n	n	u		d	+	+		1
a a b b b b b c c m n n y y y u d t t t a a b b b b b b c c m n n y y u d t t t a a b <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td><u> </u></td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>J</td>	-	-	-	-	-			<u> </u>	_	-					-	-	-					J
a s g w w b b c c v v n n y u d t t t n n y u d t t t n n y u d t t t n n y u d t t t n	а	а	s	b	ь	b	Ь	· ·	c	c	C	m	n	n	У	У	u	d	t	t		ï
a a g g g w w b b k c j i x z n y d d t t t n y d d t t t n y d d t t n y d d t t n n n n y d d t t n	а	а	s	g	w	w	b	b	с	с	c		v	n	n	У	u.	d	t	t		m
a a s s w w b b b i q d d d d o t	а	а	s	g	g	w	ь	b	k	с	i -	1	x	z	n	у	d	d	t	t	•	n
a a a s y	а	а	s	s	s	w	w	ь	b	b	b	1	a	d	d	d	d	•	t	t		0
a a a a w f f f f f t t t t t t w w w w w f f f f f f t t t t t t t t w w w f f f f f f t t t w			_																			p
a a a a s w w w w r	d	d	d	d	5	w	~	w	Ľ	0	0				Ľ.	ľ	0	0				ч r
a a a s s s s s v f f f f s s s t	а	а	а	а	s	w	w	w	w	w	w	f	f	f	1	٥	٥	0	t	t	•	s
a a a a s s s w w f f j o o o t t t a a a a a a s s w w w f f o o o t t t w	а	а	а	а	s	s	s	s	s	s	w	f	f	f	Т.	۰	o	o	t	t		t
a a a a a s s s w w w f f o o o t t t a a a a a s s s w w w f f o o o t t t a a a a a s s w w w f f o o o t t t a b a w w w f f o o a t t a </td <td>а</td> <td>а</td> <td>а</td> <td>a</td> <td>a</td> <td>а</td> <td>s</td> <td>s</td> <td>s</td> <td>s</td> <td>w</td> <td>w</td> <td>f</td> <td>f</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>t</td> <td>t</td> <td>•</td> <td>u</td>	а	а	а	a	a	а	s	s	s	s	w	w	f	f	1	0	0	0	t	t	•	u
a a a a a a a a a b a a b a a b a a a b a a a b a a a a a a a a a a a a a																	•	•				v
a b b w w f f o o o t t y y z a a a a a a a a a b w w f f o o o t t y z z z z a	a	a	a	a	a	a	a	°.	•	°						Ľ	Ŭ	Ů	·	•		w
a a a a a a a a a s s w w w f f o o o t t z	а	а	а	а	а	а	а	s	s	s	w	w	w	f	f	٥	0	0	t	t		v
	а	а	а	а	а	а	а	а	s	s	w	w	w	f	f	0	0	0	t	t		z
	а	а	а	а	а	а	а	а	s	s	s	s	w	е	f	0	0	0	t	t		

Modeling distance fit

C., Guerrero, Romero Morales; Mathematical Programming, 2018

- Distance function d, defined on pairs of compact convex sets of \mathbb{R}^n , satisfying for any A_1 , A_2
 - (i) $d \ge 0$ and d is symmetric
 - (ii) $d(A_1, A_2) = d(A_1 + z, A_2 + z), \forall z \in \mathbb{R}^n$
 - (iii) The function $d_z : z \in \mathbb{R}^n \mapsto d(z + A_1, A_2)$ is convex and satisfies for all $\theta > 0$ that $d_z(\theta A_1, \theta A_2) = \theta d_{\frac{1}{\theta}z}(A_1, A_2).$
- Possible choices of d:
 - **()** The infimum distance, $d(A_1, A_2) = \inf\{||a_1 a_2|| : a_1 \in A_1, a_2 \in A_2\}$
 - **2** The supremum distance, $d(A_1, A_2) = \sup\{||a_1 a_2|| : a_1 \in A_1, a_2 \in A_2\}$

• The average distance,
$$d(A_1, A_2) = \frac{1}{vol(A_1)vol(A_2)} \int ||a_1 - a_2||d\mu_1 d\mu_2$$
,

where $vol(\cdot)$ denotes the volume of a set and μ_1, μ_2 are probability distributions with support A_1 and A_2 .

Biobjective optimization problem:

- Distances between objects resemble dissimilarities
- $\bullet\,$ Objects are spread out in Ω

Biobjective optimization problem:

- Distances between objects resemble dissimilarities
- Objects are spread out in Ω

Distances resemble dissimilarities

$$F_{1}: \mathbb{R}^{n} \times \ldots \times \mathbb{R}^{n} \times \mathbb{R}^{+} \times \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$$
$$(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{N}, \tau, \kappa) \longmapsto \sum_{\substack{i, j = 1, \ldots, N \\ i \neq j}} \left[d(\boldsymbol{c}_{i} + \tau r_{i} \boldsymbol{\mathcal{B}}, \boldsymbol{c}_{j} + \tau r_{j} \boldsymbol{\mathcal{B}}) - \kappa \delta_{ij} \right]^{2}$$

Biobjective optimization problem:

- Distances between objects resemble dissimilarities
- Objects are spread out in Ω

Distances resemble dissimilarities

$$F_{1}: \quad \mathbb{R}^{n} \times \ldots \times \mathbb{R}^{n} \times \mathbb{R}^{+} \times \mathbb{R}^{+} \quad \longrightarrow \quad \mathbb{R}^{+} \\ (\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{N}, \tau, \kappa) \qquad \qquad \longmapsto \quad \sum_{\substack{i, j = 1, \ldots, N \\ i \neq j}} \left[d(\boldsymbol{c}_{i} + \tau r_{i} \boldsymbol{\mathcal{B}}, \boldsymbol{c}_{j} + \tau r_{j} \boldsymbol{\mathcal{B}}) - \kappa \delta_{ij} \right]^{2}.$$

Spread: separate the objects

$$F_2: \quad \mathbb{R}^n \times \ldots \times \mathbb{R}^n \times \mathbb{R}^+ \quad \longrightarrow \quad \mathbb{R}^+ \\ (\boldsymbol{c}_1, \ldots, \boldsymbol{c}_N, \tau) \qquad \longmapsto \quad -\sum_{\substack{i,j=1,\ldots,N\\ i \neq j}} d^2(\boldsymbol{c}_i + \tau r_i \mathcal{B}, \boldsymbol{c}_j + \tau r_j \mathcal{B}).$$

Biobjective optimization problem:

- Distances between objects resemble dissimilarities
- $\bullet\,$ Objects are spread out in Ω

Distances resemble dissimilarities

$$F_{1}: \quad \mathbb{R}^{n} \times \ldots \times \mathbb{R}^{n} \times \mathbb{R}^{+} \times \mathbb{R}^{+} \quad \longrightarrow \quad \mathbb{R}^{+} \\ (\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{N}, \tau, \kappa) \qquad \qquad \longmapsto \quad \sum_{\substack{i, j = 1, \ldots, N \\ i \neq j}} \left[d(\boldsymbol{c}_{i} + \tau r_{i} \boldsymbol{\mathcal{B}}, \boldsymbol{c}_{j} + \tau r_{j} \boldsymbol{\mathcal{B}}) - \kappa \delta_{ij} \right]^{2}.$$

Spread: reduce the penetration depth

$$F_{2}^{\Pi}: \quad \mathbb{R}^{n} \times \ldots \times \mathbb{R}^{n} \times \mathbb{R}^{+} \quad \longrightarrow \quad \mathbb{R}^{+} \\ (\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{N}, \tau) \qquad \longmapsto \quad \sum_{\substack{i,j=1,\ldots,N\\i \neq j}} \pi^{2} \left(\boldsymbol{c}_{i} + \tau r_{i} \boldsymbol{\mathcal{B}}, \boldsymbol{c}_{j} + \tau r_{j} \boldsymbol{\mathcal{B}} \right).$$

Biobjective optimization problem:

- Distances between objects resemble dissimilarities
- $\bullet\,$ Objects are spread out in Ω

Distances resemble dissimilarities

$$F_{1}: \quad \mathbb{R}^{n} \times \ldots \times \mathbb{R}^{n} \times \mathbb{R}^{+} \times \mathbb{R}^{+} \quad \longrightarrow \quad \mathbb{R}^{+} \\ (\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{N}, \tau, \kappa) \qquad \qquad \longmapsto \quad \sum_{\substack{i, j = 1, \ldots, N \\ i \neq j}} \left[d(\boldsymbol{c}_{i} + \tau r_{i} \mathcal{B}, \boldsymbol{c}_{j} + \tau r_{j} \mathcal{B}) - \kappa \delta_{ij} \right]^{2}.$$

Spread: separate the centers

$$F_2^{f c}: \mathbb{R}^n imes \ldots imes \mathbb{R}^n \longrightarrow \mathbb{R}^+ \ (m c_1, \ldots, m c_N) \longmapsto -\sum_{\substack{i,j=1,\ldots,N \ i
eq j}} \|m c_i - m c_j\|^2.$$

$$\min_{\substack{\boldsymbol{c}_1,\dots,\boldsymbol{c}_N,\tau,\kappa\\\text{s.t.}}} \lambda F_1(\boldsymbol{c}_1,\dots,\boldsymbol{c}_N,\tau,\kappa) + (1-\lambda)F_2^*(\boldsymbol{c}_1,\dots,\boldsymbol{c}_N,\tau)$$
$$\boldsymbol{c}_i + \tau r_i \mathcal{B} \subseteq \Omega, \ i = 1,\dots,N$$
$$\tau \in T$$
$$\kappa \in K,$$
$$(VM)^*$$

where $K, T \subset \mathbb{R}^+$, $\lambda \in [0, 1]$, and F_2^* is either F_2 , F_2^{Π} or F_2^c (yielding problems (VM), $(VM)^{\Pi}$ or $(VM)^c$, respectively).

MDS with objects: theoretical results

Proposition

Given $\lambda \in [0, 1]$, one has:

- $\lambda F_1 + (1 \lambda)F_2$ is DC,
- $\lambda F_1 + (1 \lambda) F_2^{\Pi}$ is DC,
- $\lambda F_1 + (1 \lambda) F_2^c$ is DC.

MDS with objects: theoretical results

Proposition

Given $\lambda \in [0, 1]$, one has:

- $\lambda F_1 + (1 \lambda)F_2$ is DC,
- $\lambda F_1 + (1 \lambda) F_2^{\Pi}$ is DC,
- $\lambda F_1 + (1 \lambda) F_2^c$ is DC.

Proposition

The function $\lambda F_1 + (1 - \lambda)F_2$, where d is the infimum distance, can be expressed as a DC function, $\lambda F_1 + (1 - \lambda)F_2 = u - (u - \lambda F_1 + (1 - \lambda)F_2)$, where the quadratic separable convex function u is given by

$$u = \max\{3\lambda - 1, 0\} \cdot \left[\sum_{\substack{i=1,...,N \\ i \neq j}} 8(N-1) \|\boldsymbol{c}_i\|^2 + \tau^2 \sum_{\substack{i,j=1,...,N \\ i \neq j}} \beta_{ij} \right] + 2\lambda \kappa^2 \sum_{\substack{i,j=1,...,N \\ i \neq j}} \delta_{ij}^2,$$

where β_{ij} satisfies $\beta_{ij} \ge 2 \|r_i b_i - r_j b_j\|^2$ for all $b_i, b_j \in \mathcal{B}$.

Optimization problems to solve have the form:

$$\min_{\substack{\mathbf{c}_{1},\ldots,\mathbf{c}_{N},\tau,\kappa\\\text{s.t.}}} \left\{ \sum_{\substack{i=1,\ldots,N\\ \mathbf{c}_{i}+\tau r_{i}\mathcal{B} \subseteq \Omega, \ i=1,\ldots,N}} M_{i}^{\mathbf{c}} \|\mathbf{c}_{i}\|^{2} + M^{\kappa}\kappa^{2} + M^{\tau}\tau^{2} + \sum_{i=1,\ldots,N} \mathbf{c}_{i}^{\top} \mathbf{q}_{i}^{\mathbf{c}} + p^{\kappa}\kappa + p^{\tau}\tau \right\}$$

for scalars M_i^c , M^{κ} , $M^{\tau} \ge 0$, vectors \boldsymbol{q}_i^c and scalars p^{κ} and p^{τ} .

Optimization problems to solve have the form:

$$\min_{\kappa \in K} \left\{ M^{\kappa} \kappa^{2} + p^{\kappa} \kappa \right\} + \min_{\substack{\boldsymbol{c}_{i} + \tau r_{i} \mathcal{B} \subseteq \Omega \\ \tau \in T}} \left\{ \sum_{i=1,\dots,N} M_{i}^{\boldsymbol{c}_{i}} \|\boldsymbol{c}_{i}\|^{2} + \boldsymbol{c}_{i}^{\top} \boldsymbol{q}_{i}^{\boldsymbol{c}} + M^{\tau} \tau^{2} + p^{\tau} \tau \right\}$$

for scalars M_i^c , M^{κ} , $M^{\tau} \ge 0$, vectors \boldsymbol{q}_i^c and scalars p^{κ} and p^{τ} .

Optimization problems to solve have the form:

$$\begin{split} \min_{\kappa \in K} & \left\{ M^{\kappa} \kappa^{2} + p^{\kappa} \kappa \right\} + \min_{\substack{\boldsymbol{c}_{i} + \tau r_{i} \mathcal{B} \subseteq \Omega \\ \tau \in T}} \left\{ \sum_{i=1,...,N} M_{i}^{\boldsymbol{c}_{i}} \|\boldsymbol{c}_{i}\|^{2} + \boldsymbol{c}_{i}^{\top} \boldsymbol{q}_{i}^{\boldsymbol{c}} + M^{\tau} \tau^{2} + p^{\tau} \tau \right\} \\ \text{for scalars } M_{i}^{\boldsymbol{c}}, M^{\kappa}, M^{\tau} \geq 0, \text{ vectors } \boldsymbol{q}_{i}^{\boldsymbol{c}} \text{ and scalars } p^{\kappa} \text{ and } p^{\tau} \\ \text{Convex problem in one variable.} & \text{Separable in the variables } \boldsymbol{c}_{i} \\ \text{if } \tau \text{ is fixed.} \end{split}$$

Optimization problems to solve have the form:

$$\begin{split} \min_{\kappa \in K} & \left\{ M^{\kappa} \kappa^{2} + p^{\kappa} \kappa \right\} + \min_{\substack{\boldsymbol{c}_{i} + \tau r_{i} \mathcal{B} \subseteq \Omega \\ \tau \in T}} \left\{ \sum_{i=1,...,N} M_{i}^{\boldsymbol{c}_{i}} \|\boldsymbol{c}_{i}\|^{2} + \boldsymbol{c}_{i}^{\top} \boldsymbol{q}_{i}^{\boldsymbol{c}} + M^{\tau} \tau^{2} + p^{\tau} \tau \right\} \\ \text{for scalars } M_{i}^{\boldsymbol{c}}, M^{\kappa}, M^{\tau} \geq 0, \text{ vectors } \boldsymbol{q}_{i}^{\boldsymbol{c}} \text{ and scalars } p^{\kappa} \text{ and } p^{\tau} \\ \text{Convex problem in one variable.} & \text{Alternating strategy:} \end{split}$$

- Optimization of τ for c_1, \ldots, c_N fixed.
- For a fixed τ , optimize c_1, \ldots, c_N by solving N optimization problems

$$\min_{\boldsymbol{c}_{i}} \quad \left\{ M_{i}^{\boldsymbol{c}_{i}} \| \boldsymbol{c}_{i} \|^{2} + \boldsymbol{c}_{i}^{\top} \boldsymbol{q}_{i}^{c} \right\}$$

s.t.
$$\boldsymbol{c}_{i} \in \Omega - \tau r_{i} \mathcal{B}.$$

- Algorithm coded in C on a Windows 8.1 PC Intel[®] CoreTM i7-4500U, 16GB of RAM.
- Quadratic integer programs solved with CPLEX 12.6.
- 3 steps of the alternating algorithm, where each step executes 50 iterations of DCA.
- 100 runs of the multistart strategy, where initial values for c_1, \ldots, c_N are uniformly generated in Ω .
- $\lambda = 0.9$.

Visualizing financial markets

 $V{:}$ 11 financial markets across Europe and Asia;

 $\omega:$ importance regarding to the world market portfolio, Flavin, Hurley and Rousseau, 2002;

 δ : correlation between markets, Borg and Groenen, 2005;

 $\mathcal{B}:$ disc centered at the origin with radius equal to one;

 $\Omega = [0,1]^2.$

Visualizing financial markets

 $V{:}$ 11 financial markets across Europe and Asia;

 $\omega:$ importance regarding to the world market portfolio, Flavin, Hurley and Rousseau, 2002;

 δ : correlation between markets, Borg and Groenen, 2005;

 $\mathcal{B}_1 = [-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}] \times [-\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}], \ \mathcal{B}_2 = [-\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}] \times [-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}]; \\ \Omega = [0, 1]^2.$

33 / 133

Visualizing a social network

V: 200 musicians;

 ω : degree of influence, Dörk, Carpendale and Williamson, 2012;

 δ : shortest path in the network;

 \mathcal{B} : disc centered at the origin with radius equal to one;

 $\Omega = {\rm disc}$ centered at the origin with radius equal to one.

Visualizing a social network

V: 200 musicians;

 ω : degree of influence, Dörk, Carpendale and Williamson, 2012;

 δ : shortest path in the network;

 \mathcal{B} : disc centered at the origin with radius equal to one;

 $\Omega = disc$ centered at the origin with radius equal to one.

C., Guerrero, Romero Morales. Omega, 2019C., Guerrero, Hardt, Romero Morales, Big Data, 2018

1995

Mamadou

Mamadou

Nørrebro

/ollsmose

indvandrerbaggrund

NørPansk Folkeparti tvangsægteskaber

Fogh

danskere

SarkozyPET

romaer ^{Nørrepro}Ganskere

Marwan

Josef

Kenneth

ulve

Basim

Nørrebro

Dieudonné

Supervised classification

• Given: set I of individuals, each $i \in I$ with associated

• Given: set I of individuals, each $i \in I$ with associated

- A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
- A label y_i , assumed here to be in $\{-1, +1\}$

• Seen as a sample from (\mathbf{X}, Y) , with unknown distribution

• Given: set I of individuals, each $i \in I$ with associated

- A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
- A label y_i , assumed here to be in $\{-1, +1\}$
- Seen as a sample from (\mathbf{X}, Y) , with unknown distribution
- Goal: to infer from I a classifier $\varphi : \mathcal{X} \longrightarrow \{-1, 1\}$ so that we can classify any object just by knowing \mathbf{x}

• Given: set I of individuals, each $i \in I$ with associated

- A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
- A label y_i , assumed here to be in $\{-1, +1\}$
- Seen as a sample from (\mathbf{X}, Y) , with unknown distribution
- Goal: to infer from I a classifier $\varphi : \mathcal{X} \longrightarrow \{-1, 1\}$ so that we can classify any object just by knowing \mathbf{x}
- Linear classifier $\varphi : \mathbf{x} = (x_1, \dots, x_m) \longmapsto \{-1, 1\}:$
 - score function:

$$\mathbf{x} = (x_1, \dots, x_m) \longmapsto \omega_1 x_1 + \dots + \omega_n x_m + \beta$$

•
$$\varphi(x) = \begin{cases} 1, & \text{if } \omega_1 x_1 + \ldots + \omega_n x_m + \beta > 0 \\ -1, & \text{else} \end{cases}$$

• Given: set I of individuals, each $i \in I$ with associated

- A vector $\mathbf{x}_i \in \mathcal{X}$, assumed here $\mathcal{X} \subset \mathbb{R}^m$
- A label y_i , assumed here to be in $\{-1, +1\}$
- Seen as a sample from (\mathbf{X}, Y) , with unknown distribution
- Goal: to infer from I a classifier $\varphi : \mathcal{X} \longrightarrow \{-1, 1\}$ so that we can classify any object just by knowing \mathbf{x}
- Linear classifier $\varphi : \mathbf{x} = (x_1, \dots, x_m) \longmapsto \{-1, 1\}:$

• score function:

$$\mathbf{x} = (x_1, \dots, x_m) \longmapsto \omega_1 x_1 + \dots + \omega_n x_m + \beta$$

•
$$\varphi(x) = \begin{cases} 1, & \text{if } \omega_1 x_1 + \ldots + \omega_n x_m + \beta > 0 \\ -1, & \text{else} \end{cases}$$

• Problem: how to infer from I the coefficients $\omega = (\omega_1, \ldots, \omega_n), \beta$?

• Roughly speaking, SVM finds the hyperplane $\omega_1 x_1 + \ldots + \omega_m x_m + \beta = 0$ separating most the sets $\{\mathbf{x}_i : i \in I, y_i = 1\}$ and $\{\mathbf{x}_i : i \in I, y_i = -1\}$

Convex quadratic optimization problem with linear constraints:

Convex quadratic optimization problem with linear constraints:

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \frac{\|\omega\|^2 + C \sum_{i \in I} \xi_i}{y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i} \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I$$

C., and Romero Morales, "Supervised classification and mathematical optimization", *Computers & Operations Research*, 2013.

Convex quadratic optimization problem with linear constraints:

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \end{array}$$

$$\begin{array}{ll} \max_{\lambda} & \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j \mathbf{x}_i^\top \mathbf{x}_j \\ \text{s.t.} & \sum_{i \in I} \lambda_i y_i = 0 \\ & 0 \leq \lambda_i \leq \frac{C}{2} \end{array} \qquad i \in I \end{array}$$

C., and Romero Morales, "Supervised classification and mathematical optimization", *Computers & Operations Research*, 2013.

Convex quadratic optimization problem with linear constraints:

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} & \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I$$

$$\begin{array}{ll} \max_{\lambda} & \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j K(\mathbf{x}_i, \mathbf{x}_j) \\ \text{s.t.} & \sum_{i \in I} \lambda_i y_i = 0 \\ & 0 \leq \lambda_i \leq \frac{C}{2} \end{array} \qquad i \in I \end{array}$$

C., and Romero Morales, "Supervised classification and mathematical optimization", *Computers & Operations Research*, 2013.

Kernels

 $K(\mathbf{x}_i, \mathbf{x}_j) = \dots$

- $\mathbf{x}_i^\top \mathbf{x}_j$ (linear kernel)
- $(1 + \mathbf{x}_i^\top \mathbf{x}_j)^d$ (polynomial kernel)
- $e^{-\gamma \|\mathbf{x}_i \mathbf{x}_j\|^2}$ (gaussian kernel)
- $\sum_k \theta_k e^{-\gamma_k \|\mathbf{x}_i \mathbf{x}_j\|^2}$
- \bullet ...many more (not only for ${\bf x}$ in a dot product space)
- Cristianini and Shawe-Taylor. An introduction to support vector machines and other kernel-based learning methods, 2000.
- Hofmann, Schölkopf and Smola, "Kernel methods in Machine Learning", *Annals of Statistics*, 2008.

Parameters tuning

$C,\gamma:$ k-fold crossvalidation

- I: split in k blocks of similar size, I_1, \ldots, I_k
- for each pair C, γ in a grid (e.g. $2^{-12} \dots 2^{12}$), estimate $acc(C, \gamma)$:
 - for each $i = 1, \ldots, k$
 - solve $(P_{I \setminus I_i, C, \gamma})$, yielding λ^i, β (via KKT)
 - calculate $acc(C,\gamma,I_i),$ fraction of correctly classified in I_i if classifier with λ^i,β were used

•
$$acc(C, \gamma) = \frac{1}{k} \sum_{i=1}^{k} acc(C, \gamma, I_i)$$

Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection", *IJCAI*, 1995.

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \end{array}$$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

- $\{(\mathbf{x}_i, y_i) : i \in I\}$: seen as a random sample of (\mathbf{X}, Y)
- Accuracy: $acc = P(Y(\omega^{\top}\mathbf{X} + \beta) > 0)$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

- $\{(\mathbf{x}_i, y_i) : i \in I\}$: seen as a random sample of (\mathbf{X}, Y)
- Accuracy: $acc = P(Y(\omega^{\top}\mathbf{X} + \beta) > 0)$
- Distribution of (\mathbf{X}, Y) : Unknown

(Asymmetric) costs

- Benítez-Peña, Blanquero, C., Ramírez-Cobo, "On Support Vector Machines under a multiple-cost scenario". Advances in Data Analysis and Classification, 2017.
- C., Martín-Barragán, Romero Morales. "Multi-group support vector machines with measurement costs: A biobjective approach". Discrete Applied Mathematics, 2008.
 - He, Ma. Imbalanced learning: foundations, algorithms, and applications. Wiley, 2013.
- Maldonado, Pérez, Bravo. "Cost-based feature selection for support vector machines: An application in credit scoring". EJOR, 2017.
- Prati, Batista, Duarte Silva. "Class imbalance revisited: a new experimental setup to assess the performance of treatment methods". Knowledge and Information Systems. 2015.
- Turney. "Types of cost in inductive concept learning". 2002.

Performance measures

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

Performance measures $\pi(\omega, \beta)$:

• Accuracy:
$$acc = P(Y(\omega^{\top}\mathbf{X} + \beta) > 0)$$

Performance measures

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \end{array}$$

Performance measures $\pi(\omega, \beta)$:

- Accuracy: $acc = P(Y(\omega^{\top}\mathbf{X} + \beta) > 0)$
- Sensitivity: $TPR = P(\omega^{\top}\mathbf{X} + \beta > 0 | Y = 1)$
- Specificity: $TNR = P(\omega^{\top}\mathbf{X} + \beta < 0|Y = -1)$
- Youden's index:

• . . .

 $J = TPR + TNR - 1 = P(\boldsymbol{\omega}^\top \mathbf{X} + \boldsymbol{\beta} > 0 | \boldsymbol{Y} = 1) + P(\boldsymbol{\omega}^\top \mathbf{X} + \boldsymbol{\beta} < 0 | \boldsymbol{Y} = -1) - 1$

- Positive Predictive Value: $PPV = P(Y = 1 | \omega^{\top} \mathbf{X} + \beta > 0)$
- Negative Predictive Value: $NPV = P(Y = -1|\omega^{\top}\mathbf{X} + \beta < 0)$

- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$

- Performance measures $\pi_{\ell}(\omega,\beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J : anchor sample $\{(\mathbf{x}_j, y_j) : j \in J\}$ ($J \cap I = \emptyset$)

- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J: anchor sample $\{(\mathbf{x}_j, y_j) : j \in J\} (J \cap I = \emptyset)$
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$

- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J: anchor sample $\{(\mathbf{x}_j, y_j): j \in J\} (J \cap I = \emptyset)$
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$
- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$

- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J: anchor sample $\{(\mathbf{x}_j, y_j): j \in J\} (J \cap I = \emptyset)$
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$
- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \, \ell \in L$

- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J : anchor sample $\{(\mathbf{x}_j, y_j) : j \in J\}$ ($J \cap I = \emptyset$)
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$
- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega,\beta;J) \geq \gamma_{\ell}^*, \ \ell \in L$

Standard approach

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I$$

- Performance measures $\pi_{\ell}(\omega, \beta), \ell \in L$
- Threshold values γ_{ℓ} for $\pi_{\ell}, \ell \in L$
- I: training sample $\{(\mathbf{x}_i, y_i) : i \in I\}$
- J : anchor sample $\{(\mathbf{x}_j, y_j) : j \in J\}$ ($J \cap I = \emptyset$)
- Estimates of performance measures: $\widehat{\pi_\ell}(\omega,\beta;J), \ell \in L$
- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \, \ell \in L$

Constrained approach

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \| \| \|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta \right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \\ \widehat{\pi_{\ell}}(\omega,\beta;J) \ge \gamma_{\ell}^* \qquad \qquad \ell \in L$$

Adding constraints to an SVM model

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} \quad y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \\ \left(\boldsymbol{\omega},\boldsymbol{\beta}\right) \in \Omega \end{aligned}$$

 Ω : some (polyhedral) regions forced to be in one side of the separating hyperplane

Adding constraints to an SVM model

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} \quad y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i \quad i \in I \\ \xi_i \geq 0 \qquad i \in I \\ \left(\boldsymbol{\omega},\boldsymbol{\beta}\right) \in \Omega \end{aligned}$$

 Ω : some (polyhedral) regions forced to be in one side of the separating hyperplane

- C., and Plastria, "Optimal expected-distance separating halfspace", *Maths* of OR, 2008.
- Fung, , Mangasarian, and Shavlik, "Knowledge-based support vector machine classifiers". In *Advances in NIPS*, 2002
- Lauer and Bloch, "Incorporating prior knowledge in support vector machines for classification: A review", *Neurocomputing*, 2008.
- Mangasarian, "Knowledge-based linear programming", SIAM Journal on Optimization, 2005.
- Mangasarian and Wild, "Nonlinear knowledge-based classification", *IEEE Transactions on Neural Networks*, 2008.

- Desired: $\pi_{\ell}(\omega, \beta) \geq \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \, \ell \in L$

- Desired: $\pi_{\ell}(\omega,\beta) \geq \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega,\beta;J) \geq \gamma_{\ell}^*, \ \ell \in L$
- γ_{ℓ}^* : so that H_0 cannot be rejected in the test hypothesis

$$\begin{cases} H_0: & \pi_\ell(\omega, \beta) \ge \gamma_\ell \\ H_1: & \pi_\ell(\omega, \beta) < \gamma_\ell \end{cases}$$

- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \ \ell \in L$
- γ_{ℓ}^* : so that H_0 cannot be rejected in the test hypothesis

$$\begin{cases} H_0: & \pi_\ell(\omega, \beta) \ge \gamma_\ell \\ H_1: & \pi_\ell(\omega, \beta) < \gamma_\ell \end{cases}$$

Building γ_{ℓ}^*

- Hoeffding's inequality: for Z_1, \ldots, Z_n *i.i.d.*, $Be(p), P(\overline{Z} p \ge c) \le e^{-2nc^2}$.
- $100(1-\alpha)\%$ CI for p:

$$\left(\bar{Z} - \sqrt{\frac{\log \alpha}{-2n}}, 1\right)$$

• Imposing $p_0 \in CI$ means

$$\bar{Z} \ge p_0 + \sqrt{\frac{\log \alpha}{-2n}}$$

- Desired: $\pi_{\ell}(\omega, \beta) \ge \gamma_{\ell}, \ \ell \in L$
- Imposed: $\widehat{\pi_{\ell}}(\omega, \beta; J) \ge \gamma_{\ell}^*, \ \ell \in L$
- γ_{ℓ}^* : so that H_0 cannot be rejected in the test hypothesis

$$\begin{bmatrix} H_0 : & \pi_\ell(\omega, \beta) \ge \gamma_\ell \\ H_1 : & \pi_\ell(\omega, \beta) < \gamma_\ell \end{bmatrix}$$

Building γ_{ℓ}^*

- Hoeffding's inequality: for Z_1, \ldots, Z_n *i.i.d.*, $Be(p), P(\overline{Z} p \ge c) \le e^{-2nc^2}$.
- $100(1-\alpha)\%$ CI for p:

$$\left(\bar{Z} - \sqrt{\frac{\log \alpha}{-2n}}, 1\right)$$

• Imposing $p_0 \in CI$ means

$$\bar{Z} \ge p_0 + \sqrt{\frac{\log \alpha}{-2n}}$$

•
$$\gamma_{\ell}^* = \gamma_{\ell} + \sqrt{\frac{\log \alpha}{-2|J|}}$$

Feasibility?

Always feasible:

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{l} \|\omega\|^2 + C \sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \end{array}$$

Maybe unfeasible:

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} \quad y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \qquad \qquad i \in I \\ \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* \qquad \qquad \ell \in L \end{aligned}$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} \quad y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \\ \widehat{\pi_\ell}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_\ell^* \quad \ell \in L \end{aligned}$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 & i \in I \\ & \widehat{\pi_\ell}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_\ell^* & \boldsymbol{\ell} \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \frac{\|\omega\|^2 + C \sum_{i \in I} \xi_i}{y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i} \quad i \in I \\ \xi_i \ge 0 \qquad i \in I \\ \widehat{\pi_\ell}(\omega,\beta;J) \ge \gamma_\ell^* \qquad \ell \in L } z_j = \begin{cases} 1, & \text{if } y_j \left(\omega^\top \mathbf{x}_j + \beta\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{TPR}(\omega,\beta;J) \geq \gamma$

$$\sum_{j \in J: y_j = 1} z_j \ge \gamma \# (\{j \in J: y_j = 1\})$$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C\sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \\ \widehat{\pi_{\ell}}(\omega,\beta;J) \ge \gamma_{\ell}^* \quad \ell \in L \end{array} z_j = \begin{cases} 1, & \text{if } y_j \left(\omega^\top \mathbf{x}_j + \beta\right) \ge 1 \\ 0, & \text{else} \end{cases} j \in J$$

 $\widehat{TNR}(\omega,\beta;J) \geq \gamma$

$$\sum_{j \in J: y_j = -1} z_j \ge \gamma \# (\{j \in J: y_j = -1\})$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} \quad & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 \quad & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* \quad & \boldsymbol{\ell} \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{J}(\omega,\beta;J) \geq \gamma$

$$\sum_{j \in J} z_j \ge \gamma \, \# \, (J)$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* & \ell \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{TPR_m}(\omega,\beta;J) \geq \gamma$

$$\sum_{j \in J: u_j = m} z_j \ge \gamma \# \left(\{ j \in J: u_j = m \} \right)$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* & \boldsymbol{\ell} \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{PPV}(\omega,\beta;J) \geq \gamma$

$$(1 - \gamma) prev_{+} \sum_{j \in J: y_{j} = 1} z_{j} - \gamma (1 - prev_{+}) \sum_{j \in J: y_{j} = -1} (1 - z_{j}) \ge 0$$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* & \boldsymbol{\ell} \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{NPV}(\omega,\beta;J) \geq \gamma$

$$(1 - \gamma) prev_{-} \sum_{j \in J: y_j = -1} z_j - \gamma (1 - prev_{-}) \sum_{j \in J: y_j = 1} (1 - z_j) \ge 0$$

$$\min_{\substack{\omega,\beta,\xi \\ \text{s.t.}}} \begin{array}{c} \|\omega\|^2 + C\sum_{i \in I} \xi_i \\ y_i \left(\omega^\top \mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \xi_i \ge 0 \quad i \in I \\ \widehat{\pi_\ell}(\omega,\beta;J) \ge \gamma_\ell^* \quad \ell \in L \end{array} z_j = \begin{cases} 1, & \text{if } y_j \left(\omega^\top \mathbf{x}_j + \beta\right) \ge 1 \\ 0, & \text{else} \end{cases} j \in J$$

 $\widehat{\pi_\ell}(\omega,\beta;J) \geq \gamma_\ell^*$

 $\mathbf{a}_{\ell}^{\top}\mathbf{z} \geq b_{\ell}$

$$\min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} \quad \begin{aligned} & \|\boldsymbol{\omega}\|^2 + C\sum_{i \in I} \boldsymbol{\xi}_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \ge 1 - \boldsymbol{\xi}_i \quad i \in I \\ & \boldsymbol{\xi}_i \ge 0 & i \in I \\ & \widehat{\pi_{\ell}}(\boldsymbol{\omega},\boldsymbol{\beta};J) \ge \gamma_{\ell}^* & \boldsymbol{\ell} \in L \end{aligned} \quad z_j = \begin{cases} 1, & \text{if } y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \ge 1 \\ 0, & \text{else} \end{cases} \quad j \in J$$

 $\widehat{\pi_\ell}(\omega,\beta;J) \geq \gamma_\ell^*$

$$\mathbf{a}_{\ell}^{\top}\mathbf{z} \geq b_{\ell}$$

$$\begin{split} \min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi},\mathbf{z}} & \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i & i \in I \\ & \xi_i \geq 0 & i \in I \\ & \mathbf{a}_{\ell}^\top z \geq b_{\ell} & \ell \in L \\ & z_{\ell} \in \{0,1\} & \ell \in L \\ & y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \geq 1 - M(1 - z_j) & j \in J \end{split}$$

$$\begin{split} \min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi},\mathbf{z}} & \|\boldsymbol{\omega}\|^2 + C \sum_{i \in I} \xi_i \\ \text{s.t.} & y_i \left(\boldsymbol{\omega}^\top \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i & i \in I \\ & \xi_i \geq 0 & i \in I \\ & \mathbf{a}_l^\top z \geq b_l & l \in L \\ & z_\ell \in \{0,1\} & \ell \in L \\ & y_j \left(\boldsymbol{\omega}^\top \mathbf{x}_j + \boldsymbol{\beta}\right) \geq 1 - M(1 - z_j) & j \in J \end{split}$$
• Denote $J(z) = \{ j \in J : z_j = 1 \}$

$$\begin{array}{lll} \min_{\mathbf{z}} & \min_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\xi}} & \boldsymbol{\omega}^{\top}\boldsymbol{\omega} + C\sum_{i \in I} \xi_i \\ \text{s.t.} & \boldsymbol{z}_{\ell} \in \{0,1\} & \ell \in L & \text{s.t.} & \boldsymbol{y}_i \left(\boldsymbol{\omega}^{\top} \mathbf{x}_i + \boldsymbol{\beta}\right) \geq 1 - \xi_i & i \in I \\ \mathbf{a}_{\ell}^{\top} \boldsymbol{z} \geq \boldsymbol{b}_{\ell} & l \in L & \boldsymbol{y}_j \left(\boldsymbol{\omega}^{\top} \mathbf{x}_j + \boldsymbol{\beta}\right) \geq 1 & j \in J(\mathbf{z}) \\ \boldsymbol{\xi}_i \geq 0 & i \in I \end{array}$$

• Denote $J(z) = \{ j \in J : z_j = 1 \}$

$$\begin{array}{ll} \min_{\mathbf{z}} & \min_{\omega,\beta,\xi} & \omega^{\top}\omega + C\sum_{i\in I}\xi_i \\ \text{s.t.} & z_{\ell} \in \{0,1\} \quad \ell \in L \quad \text{s.t.} & y_i \left(\omega^{\top}\mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \mathbf{a}_{\ell}^{\top}z \ge b_{\ell} \quad l \in L & y_j \left(\omega^{\top}\mathbf{x}_j + \beta\right) \ge 1 \quad j \in J(\mathbf{z}) \\ \xi_i \ge 0 & i \in I \end{array}$$

KKT conditions for inner problem (\mathbf{z} fixed)

$$\begin{array}{rcl} \omega & = & \sum_{s \in I} \lambda_s y_s \mathbf{x}_s + \sum_{t \in J(\mathbf{z})} \mu_t y_t \mathbf{x}_t \\ 0 & = & \sum_{s \in I} \lambda_s y_s + \sum_{t \in J(\mathbf{z})} \mu_t y_t \\ 0 & \leq & \lambda_s \leq C/2 & s \in I \\ 0 & \leq & \mu_t & t \in J(\mathbf{z}) \end{array}$$

• Denote $J(z) = \{ j \in J : z_j = 1 \}$

$$\begin{array}{ll} \min_{\mathbf{z}} & \min_{\omega,\beta,\xi} & \omega^{\top}\omega + C\sum_{i\in I}\xi_i \\ \text{s.t.} & z_{\ell} \in \{0,1\} \quad \ell \in L \quad \text{s.t.} & y_i \left(\omega^{\top}\mathbf{x}_i + \beta\right) \ge 1 - \xi_i \quad i \in I \\ \mathbf{a}_{\ell}^{\top}z \ge b_{\ell} \quad l \in L & y_j \left(\omega^{\top}\mathbf{x}_j + \beta\right) \ge 1 \quad j \in J(\mathbf{z}) \\ \xi_i \ge 0 & i \in I \end{array}$$

KKT conditions for inner problem (\mathbf{z} fixed)

$$\begin{array}{rcl} \omega & = & \sum_{s \in I} \lambda_s y_s \mathbf{x}_s + \sum_{t \in J} \mu_t y_t \mathbf{x}_t \\ 0 & = & \sum_{s \in I} \lambda_s y_s + \sum_{t \in J} \mu_t y_t \\ 0 & \leq & \lambda_s \leq C/2 & s \in I \\ 0 & \leq & \mu_t \leq M z_t & t \in J \end{array}$$

$$\begin{split} \min_{\lambda,\mu,\beta,\xi,\mathbf{z}} & \left(\sum_{s \in I} \lambda_s y_s \mathbf{x}_s + \sum_{t \in J} \mu_t y_t \mathbf{x}_t \right)^\top \left(\sum_{s \in I} \lambda_s y_s \mathbf{x}_s + \sum_{t \in J} \mu_t y_t \mathbf{x}_t \right) \\ & + C \sum_{i \in I} \xi_i \\ \text{s.t.} & z_\ell \in \{0,1\} & \ell \in L \\ & \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ & y_i \left(\left(\sum_{s \in I} \lambda_s y_s \mathbf{x}_s + \sum_{t \in J} \mu_t y_t \mathbf{x}_t \right)^\top \mathbf{x}_i + \beta \right) \ge 1 - \xi_i & i \in I \\ & y_j \left(\left(\sum_{s \in I} \lambda_s y_s \mathbf{x}_s + \sum_{t \in J} \mu_t y_t \mathbf{x}_t \right)^\top \mathbf{x}_j + \beta \right) \ge 1 - M(1 - z_j) & j \in J \\ & \xi_i \ge 0 & i \in I \\ & 0 \le \lambda_i \le C/2 & i \in I \\ & 0 \le \mu_j \le M z_j & j \in J \end{split}$$

$$\begin{array}{ll} \min & \sum_{s,s' \in I} \lambda_s y_s \lambda_{s'} y_{s'} K(\mathbf{x}_s, \mathbf{x}_{s'}) + \sum_{t,t' \in J} \mu_t y_t \mu_{t'} y_{t'} K(\mathbf{x}_t, \mathbf{x}_{t'}) \\ & + 2 \sum_{s \in I, t \in J} \lambda_s y_s \lambda_t y_t K(\mathbf{x}_s, \mathbf{x}_t) + C \sum_{i \in I} \xi_i \\ \text{s.t.} & z_\ell \in \{0, 1\} & \ell \in L \\ & \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ & y_i \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_i) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_i) + \beta\right) \ge 1 - \xi_i & i \in I \\ & y_j \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_j) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_j) + \beta\right) \ge 1 - M(1 - z_j) & j \in J \\ & \xi_i \ge 0 & i \in I \\ & 0 \le \lambda_i \le C/2 & i \in I \\ & 0 \le \mu_j \le M z_j & j \in J \end{array}$$

$$\begin{array}{ll} \min & \sum_{s,s' \in I} \lambda_s y_s \lambda_{s'} y_{s'} K(\mathbf{x}_s, \mathbf{x}_{s'}) + \sum_{t,t' \in J} \mu_t y_t \mu_{t'} y_{t'} K(\mathbf{x}_t, \mathbf{x}_{t'}) \\ & + 2 \sum_{s \in I, t \in J} \lambda_s y_s \lambda_t y_t K(\mathbf{x}_s, \mathbf{x}_t) + C \sum_{i \in I} \xi_i \\ \text{s.t.} & z_\ell \in \{0, 1\} & \ell \in L \\ & \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ & y_i \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_i) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_i) + \beta\right) \ge 1 - \xi_i & i \in I \\ & y_j \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_j) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_j) + \beta\right) \ge 1 - M(1 - z_j) & j \in J \\ & \xi_i \ge 0 & i \in I \\ & 0 \le \lambda_i \le C/2 & i \in I \\ & 0 \le \mu_j \le M z_j & j \in J \end{array}$$

Parameters involved:

- C, to be **tuned**
- M, to be fixed

$$\begin{array}{ll} \min & \sum_{s,s' \in I} \lambda_s y_s \lambda_{s'} y_{s'} K(\mathbf{x}_s, \mathbf{x}_{s'}) + \sum_{t,t' \in J} \mu_t y_t \mu_{t'} y_{t'} K(\mathbf{x}_t, \mathbf{x}_{t'}) \\ & + 2 \sum_{s \in I, t \in J} \lambda_s y_s \lambda_t y_t K(\mathbf{x}_s, \mathbf{x}_t) + C \sum_{i \in I} \xi_i \\ \text{s.t.} & z_\ell \in \{0, 1\} & \ell \in L \\ & \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ & y_i \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_i) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_i) + \beta\right) \ge 1 - \xi_i & i \in I \\ & y_j \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_j) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_j) + \beta\right) \ge 1 - M(1 - z_j) & j \in J \\ & \xi_i \ge 0 & i \in I \\ & 0 \le \lambda_i \le C/2 & i \in I \\ & 0 \le \mu_j \le M z_j & j \in J \end{array}$$

Parameters involved:

- C, to be tuned
- M, to be fixed?

$$\begin{array}{ll} \min & \sum_{s,s' \in I} \lambda_s y_s \lambda_{s'} y_{s'} K(\mathbf{x}_s, \mathbf{x}_{s'}) + \sum_{t,t' \in J} \mu_t y_t \mu_{t'} y_{t'} K(\mathbf{x}_t, \mathbf{x}_{t'}) \\ & + 2 \sum_{s \in I, t \in J} \lambda_s y_s \lambda_t y_t K(\mathbf{x}_s, \mathbf{x}_t) + C \sum_{i \in I} \xi_i \\ \text{s.t.} & z_\ell \in \{0, 1\} & \ell \in L \\ & \mathbf{a}_\ell^\top z \ge b_\ell & \ell \in L \\ & y_i \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_i) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_i) + \beta\right) \ge 1 - \xi_i & i \in I \\ & y_j \left(\sum_{s \in I} \lambda_s y_s K(\mathbf{x}_s, \mathbf{x}_j) + \sum_{t \in J} \mu_t y_t K(\mathbf{x}_t, \mathbf{x}_j) + \beta\right) \ge 1 - M(1 - z_j) & j \in J \\ & \xi_i \ge 0 & i \in I \\ & 0 \le \lambda_i \le C/2 & i \in I \\ & 0 \le \mu_j \le M z_j & j \in J \end{array}$$

Parameters involved:

- $\bullet~C,$ to be tuned
- M, to be fixed?

Straightforward extension to several anchors

Experiments

- RBF kernel, parameters tuned by grid search
- \bullet Python + Gurobi
- M = 100, time.limit = 300 sec

Experiments

- RBF kernel, parameters tuned by grid search
- Python + Gurobi
- M = 100, time.limit = 300 sec

Data sets

Name	$ \Omega $	V	$ \Omega_+ $	(%)
wisconsin	567	30	357	(62.7%)
australian	690	14	383	(55.5%)
votes	435	16	267	(61.4%)
german	1000	45	700	(70%)

Results. Increasing TNR (0.025)

Name		SVM		CSVM	
		Mean	Std	Mean	Std
wisconsin	TPR	0.990	0.017	0.945	0.045
	TNR	0.948	0.049	0.965	0.037
australian	TPR	0.863	0.079	0.772	0.081
	TNR	0.830	0.071	0.903	0.050
votes	TPR	0.963	0.040	0.846	0.097
	TNR	0.951	0.031	0.978	0.038
german	TPR	0.905	0.036	0.791	0.063
	TNR	0.405	0.114	0.547	0.141

Results. Increasing TPR (0.025)

Name		SVM		CSVM	
		Mean	Std	Mean	Std
wisconsin	TPR	0.990	0.017	0.989	0.018
	TNR	0.948	0.049	0.856	0.153
australian	TPR	0.863	0.079	0.910	0.047
	TNR	0.830	0.071	0.694	0.092
votes	TPR	0.963	0.040	0.978	0.026
	TNR	0.951	0.031	0.922	0.040
german					

Data sets

Name	$ \Omega $	V	$ \Omega_+ $	(%)
wisconsin	567	30	357	(62.7%)
australian	690	14	383	(55.5%)
votes	435	16	267	(61.4%)
german	1000	45	700	(70%)

G-mean criterion

	SVM		CSVM		CSVM	
			(TNR)	$\geq 0.65)$	(TNR	≥ 0.7)
	Mean	Std	Mean	Std	Mean	Std
TPR	0.905	0.036	0.668	0.111	0.683	0.073
TNR	0.405	0.114	0.671	0.164	0.690	0.103

Benítez-Peña, Blanquero, C., Ramírez-Cobo, Cost-sensitive feature selection for support vector machines. Computers & OR, 2019.

Aim

- Find a minimum-cost (e.g. minimum-cardinality) set of features
 - Attaining $\widehat{\pi}_{\ell}(\omega,\beta) \geq \gamma^*_{\ell}, \, \ell \in L$
 - Hoping $\pi_{\ell}(\omega, \beta; I) \geq \gamma_{\ell}, \ \ell \in L$
- Once identified the features, solve an SVM

Feature selection. Linear kernel

$$\min_{\boldsymbol{w},\boldsymbol{\beta},\boldsymbol{z},\boldsymbol{\zeta}} \quad \sum_{k=1}^{N} \frac{\boldsymbol{\delta}_{k} \boldsymbol{z}_{k}}{\boldsymbol{\delta}_{k} \boldsymbol{z}_{k}} \\ s.t. \quad y_{i}(\boldsymbol{w}^{\top} \boldsymbol{x}_{i} + \boldsymbol{\beta}) \geq 1 - L(1 - \zeta_{i}), \qquad \forall i \in I \\ \sum_{i \in I} \zeta_{i}(1 - y_{i}) \geq \boldsymbol{\lambda}_{-1} \sum_{i \in I} (1 - y_{i}) \\ \sum_{i \in I} \zeta_{i}(1 + y_{i}) \geq \boldsymbol{\lambda}_{1} \sum_{i \in I} (1 + y_{i}) \\ |\boldsymbol{w}_{k}| \leq M \boldsymbol{z}_{k} \qquad \forall k \in 1, \dots, N \\ \zeta_{i} \in \{0, 1\} \qquad \forall i \in I \\ \boldsymbol{z}_{k} \in \{0, 1\} \qquad \forall k \in 1, \dots, N$$

Results. Linear kernel

Name		SVM		\mathbf{FS}		Reduction
		Mean	Std	Mean	Std	
wisconsin	TPR	0.992	0.013	0.975	0.023	$30 \to 6.2 \ (0.919 \ \text{Std})$
	TNR	0.943	0.051	0.947	0.048	
votes	TPR	0.955	0.038	0.96	0.034	$32 \to 9.3 \ (1.16 \ \text{Std})$
	TNR	0.947	0.059	0.945	0.052	
nursery	TPR	1	0	1	0	$19 \rightarrow 1 \ (0 \ \text{Std})$
	TNR	1	0	1	0	
australian	TPR	0.769	0.083	0.772	0.074	$34 \to 5.75 \ (1.89 \ \text{Std})$
	TNR	0.912	0.05	0.924	0.053	
careval	TPR	0.96	0.022	0.962	0.018	$15 \rightarrow 11 \ (0 \ \text{Std})$
	TNR	0.948	0.024	0.935	0.039	

Results. Radial kernel

Ferraty and Vieu. Nonparametric functional data analysis: theory and practice, 2006.

• $\mathbf{x} \in \mathcal{C}^0([0,T])$

- Ramsay and Silverman. *Functional data analysis*, 2006.
 - Febrero-Bande and Oviedo de la Fuente. "Statistical computing in functional data analysis: the r package fda.usc". *Journal of Statistical Software*, 2012.

•
$$\mathbf{x} \in \mathcal{C}^0([0,T])$$

• $\mathbf{x} \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \in \mathbb{R}^m$

Ferraty and Vieu. Nonparametric functional data analysis: theory and practice, 2006.

- Ramsay and Silverman. *Functional data analysis*, 2006.
 - Febrero-Bande and Oviedo de la Fuente. "Statistical computing in functional data analysis: the r package fda.usc". *Journal of Statistical Software*, 2012.

• $\mathbf{x} \in \mathcal{C}^0([0,T])$ • $\mathbf{x} \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \in \mathbb{R}^m$ • $(\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \approx \mathbf{x} \in \mathcal{C}^0([0,T])$

- Ferraty and Vieu. Nonparametric functional data analysis: theory and practice, 2006.
- Ramsay and Silverman. *Functional data analysis*, 2006.
- Febrero-Bande and Oviedo de la Fuente. "Statistical computing in functional data analysis: the r package fda.usc". *Journal of Statistical Software*, 2012.

- $\mathbf{x} \in \mathcal{C}^0([0,T])$ • $\mathbf{x} \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \in \mathbb{R}^m$ • $(\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \approx \mathbf{x} \in \mathcal{C}^0([0,T]) \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m))$
- Ferraty and Vieu. Nonparametric functional data analysis: theory and practice, 2006.
- Ramsay and Silverman. *Functional data analysis*, 2006.
- Febrero-Bande and Oviedo de la Fuente. "Statistical computing in functional data analysis: the r package fda.usc". *Journal of Statistical Software*, 2012.

•
$$\mathbf{x} \in \mathcal{C}^0([0,T])$$

• $\mathbf{x} \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \in \mathbb{R}^m$
• $(\mathbf{x}(t_1), \dots, \mathbf{x}(t_m)) \approx \mathbf{x} \in \mathcal{C}^0([0,T]) \approx (\mathbf{x}(t_1), \dots, \mathbf{x}(t_m))$

Muñoz and González. "Representing functional data using support vector machines". *Pattern Recognition Letters*, 2010.

Rossi and Villa. "Support vector machine for functional data classification". *Neurocomputing*, 2006.

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \int_0^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \int_0^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt \approx \sum_k \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \int_0^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt \approx \sum_k \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2$$

• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt} \approx e^{-\sum_k \gamma \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2}$

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \int_0^T (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt \approx \sum_k \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2$$

• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt} \approx e^{-\sum_k \gamma \eta_k (\mathbf{x}_i(t_k) - \mathbf{x}_j(t_k))^2}$

Gaussian kernel with functional bandwidth

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(t) (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$

Gaussian kernel with functional bandwidth

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(t) (\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$

A possible model for γ

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \cdots & \cdots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

- $\gamma_1,\ldots,\gamma_H\geq 0$
- $0 \leq \tau_1 \leq \ldots \leq \tau_{H-1} \leq T$

Blanquero, C., Jiménez-Cordero, Martín-Barragán. Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm. EJOR, 2019

An example: Mitochondrial calcium data set

- 360 time instants in [0, T], T = 3590
- 44 mice in treatment (+1), 45 control (-1)

An example: Mitochondrial calcium data set

90 / 133

- 360 time instants in [0, T], T = 3590
- 44 mice in treatment (+1), 45 control (-1)

Out of sample accuracy estimates

	$\gamma(t)$	$=\gamma$	$\gamma(t) = \left\{ egin{array}{c} \gamma_1 \ \gamma_2 \end{array} ight.$	1, if $0 \le t \le \tau_1$ 2, if $\tau_1 < t \le T$
	-1	+1	-1	+1
-1:	37.55%	10.96%	42.58%	7.56%
+1	12.09%	35.6 1%	7.23%	42.95%

Parameters tuning (basic gaussian kernel)

C, γ : k-fold crossvalidation

- I: split in k blocks of similar size, I_1, \ldots, I_k
- for each pair C, γ in a grid (e.g. $2^{-12} \dots 2^{12}$), estimate $acc(C, \gamma)$:
 - for each $i = 1, \ldots, k$
 - solve $(P_{I \setminus I_i, C, \gamma})$, yielding λ^i, β (via KKT)
 - calculate $acc_i(C, \gamma)$, fraction of correctly classified in I_i if classifier with λ^i, β were used

•
$$acc(C, \gamma) = \frac{1}{k} \sum_{i=1}^{k} acc_i(C, \gamma)$$

Parameters tuning (basic gaussian kernel)

$C,\gamma:$ k-fold crossvalidation

- I: split in k blocks of similar size, I_1, \ldots, I_k
- for each pair C, γ in a grid (e.g. $2^{-12} \dots 2^{12}$), estimate $acc(C, \gamma)$:
 - for each $i = 1, \ldots, k$
 - solve $(P_{I \setminus I_i, C, \gamma})$, yielding λ^i, β (via KKT)
 - calculate $acc_i(C, \gamma)$, fraction of correctly classified in I_i if classifier with λ^i, β were used

•
$$acc(C, \gamma) = \frac{1}{k} \sum_{i=1}^{k} acc_i(C, \gamma)$$

Unfeasible for functional bandwidth kernel!!!

 $\theta = (\gamma_1, \ldots, \gamma_H | \tau_1, \ldots, \tau_{H-1})$

$$\theta = (\gamma_1, \dots, \gamma_H | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

$$\theta = (\gamma_1, \dots, \gamma_H | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

$$\max_{\lambda} \quad \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j K_{\theta}(\mathbf{x}_i, \mathbf{x}_j)$$

s.t.
$$\sum_{i \in I} \lambda_i y_i = 0$$

$$0 \le \lambda_i \le \frac{C}{2}$$
 $i \in I$ $(P_{I,C,\theta})$

$$\theta = (\gamma_1, \dots, \gamma_H | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

$$\begin{array}{ll} \max_{\lambda} & \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j K_{\theta}(\mathbf{x}_i, \mathbf{x}_j) \\ \text{s.t.} & \sum_{i \in I} \lambda_i y_i = 0 \\ & 0 \le \lambda_i \le \frac{C}{2} \end{array}$$
 $(P_{I,C,\theta})$

Randomly split sample I into I_1 , I_2 and I_3 . for C in grid do

end Alternating Procedure repeat

1. Fixed θ , find λ^C solving $(P_{I_1,C,\theta})$ until

2. Fixed λ , find θ maximizing correlation of y and $\hat{y}_{I,C,\theta}$ in I_2 . stopping criteria

Return as C the one with best misclassification rate in I_3 .
$$\theta = (\gamma_1, \dots, \gamma_H | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

$$\begin{array}{ll} \max_{\lambda} & \sum_{i \in I} \lambda_i - \frac{1}{2} \sum_{ij} \lambda_i y_i \lambda_j y_j K_{\theta}(\mathbf{x}_i, \mathbf{x}_j) \\ \text{s.t.} & \sum_{i \in I} \lambda_i y_i = 0 \\ & 0 \leq \lambda_i \leq \frac{C}{2} \end{array}$$
 $(P_{I,C,\theta})$

Randomly split sample I into I_1 , I_2 and I_3 . for C in grid do

end Alternating Procedure repeat

1. Fixed θ , find λ^C solving $(P_{I_1,C,\theta})$ until

2. Fixed λ , find θ maximizing correlation of y and $\hat{y}_{I,C,\theta}$ in I_2 . stopping criteria

Return as C the one with best misclassification rate in I_3 .

$$\widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta$$

$$K_{\theta}(\mathbf{x}, \mathbf{x}_{i}) = e^{-\sum_{h=1}^{H} \int_{\tau_{h-1}}^{\tau_{h}} \gamma_{h}(\mathbf{x}(t) - \mathbf{x}_{i}(t))^{2} dt}$$

$$\widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta$$

$$K_{\theta}(\mathbf{x}, \mathbf{x}_{i}) = e^{-\sum_{h=1}^{H} \int_{\tau_{h-1}}^{\tau_{h}} \gamma_{h}(\mathbf{x}(t) - \mathbf{x}_{i}(t))^{2} dt}$$

Smooth optimization problem

- ${\scriptstyle \bullet}\,$ chain rule
- $K: \mathcal{C}^1$ for $\mathbf{x}: \mathcal{C}^0$
- $K: \mathcal{C}^3$ for $\mathbf{x}: \mathcal{C}^2$ (as generated by cubic spline)

Model ${\cal H}$

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \dots & \dots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

Nested heuristic

📔 C., Martín-Barragán, Romero Morales, Computers & OR, 2014

Model ${\cal H}$

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \dots & \dots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

Nested heuristic

C., Martín-Barragán, Romero Morales, Computers & OR, 2014

 $\begin{array}{l} \text{Model 1} \\ \gamma(t) = \gamma_1 \end{array}$

Model ${\cal H}$

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \dots & \dots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

Nested heuristic

C., Martín-Barragán, Romero Morales, Computers & OR, 2014

 $\begin{array}{l} \text{Model 1} \\ \gamma(t) = \gamma_1 \end{array}$

Model H

$$\gamma(t) = \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \dots & \dots \\ \gamma_H, & \text{if } \tau_{H-1} < t \le T \end{cases}$$

Nested heuristic

🔋 C., Martín-Barragán, Romero Morales, Computers & OR, 2014

 $\begin{array}{l} \text{Model 1} \\ \gamma(t) = \gamma_1 \end{array}$

$$\begin{array}{ll} \text{Model } 2 & \text{Model } 3 \\ \gamma(t) = & \\ \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le T \end{cases} \begin{cases} \gamma_1, & \text{if } 0 \le t \le \tau_1 \\ \gamma_2, & \text{if } \tau_1 < t \le \tau_2 \\ \gamma_3, & \text{if } \tau_2 < t < T \end{cases}$$

A test example

15,000 functions like these

Time

A test example

15,000 functions like these

	1 (classic SVM)	H = 2	H = 3	H = 4
% misc	32.95	0	0	0

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

96 / 133

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

96 / 133

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

96 / 133

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

	#records	#time instants	#records label -1	#records label +1
MCO	89	360	44	45
growth	93	31	54	39
phoneme	200	150	100	100
rain	35	365	15	20
regions	35	365	20	15
tecator	215	100	77	138

% misclassification rate (out-of-sample)

	H = 1	H = 2	H = 3	H = 4
MCO	20.80	14.73	11.05	10.37
growth	5.64	4.67	4.35	4.19
phoneme	19.88	18.08	17.63	17.11
rain	28.40	22.84	22.42	21.59
regions	19.46	16.43	16.02	16.51
tecator	3.47	2.92	2.64	2.29

Gaussian kernel for functional data (II)

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$

Gaussian kernel for functional data (II)

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$

• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(t)(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$

Gaussian kernel for functional data (II)

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

•
$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$$

• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\int_0^T \gamma(t)(\mathbf{x}_i(t) - \mathbf{x}_j(t))^2 dt}$
• $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\sum_{h=1}^H \gamma(\mathbf{x}_i(\tau_h) - \mathbf{x}_j(\tau_h))^2}$
• $\gamma \ge 0$
• $0 \le \tau_{h-1} \le \tau_h - \delta, h = 1, \dots, H$

tecator

tecator

tecator

Parameters tuning (time instants selection)

Blanquero, C., Jiménez-Cordero, Martín-Barragán. Variable selection in classification for multivariate functional data. Information Sciences, 2019.

$$\theta = (\gamma | \tau_1, \ldots, \tau_{H-1})$$

Parameters tuning (time instants selection)

Blanquero, C., Jiménez-Cordero, Martín-Barragán. Variable selection in classification for multivariate functional data. Information Sciences, 2019.

$$\theta = (\gamma | \tau_1, \dots, \tau_{H-1}) \qquad \qquad \widehat{y}_{I,C,\theta}(\mathbf{x}) = \sum_{i \in I} y_i \lambda_i^C K_{\theta}(\mathbf{x}, \mathbf{x}_i) + \beta^C$$

Randomly split sample I into I_1 , I_2 and I_3 . for C in grid do

```
end
Alternating Procedure repeat
1. Fixed \theta, find \lambda^C solving (P_{I_1,C,\theta})
until
```

,

2. Fixed λ , find θ maximizing correlation of y and $\hat{y}_{I,C,\theta}$ in I_2 . stopping criteria

Return as C the one with best misclassification rate in I_3 . Return as λ and θ those associated with C

% misclassification rate (out-of-sample)

	SVM	H = 1	H=2	H = 3	H = 4
MCO	20.80	29.02	18.64	18.14	18.81
growth	5.64	13.22	4.67	4.03	3.87
phoneme	19.88	18.00	16.96	16.36	16.20
rain	28.40	10.75	11.66	11.66	10
regions	19.46	20.75	10.26	8.10	7.23
tecator	3.47	4.66	2.22	2.08	1.52

CARTs (Breiman et al. 1984)

Applicant	Age	Income level	Loan granted
1	22	Low	No
2	26	High	No
3	30	Low	Yes
4	32	Low	No
5	20	High	No
6	45	High	Yes
7	60	High	No
8	54	High	Yes
9	50	Low	No
10	48	High	Yes

 Pros

- They are rule-based and, when they are not very deep, deemed to be easy-to-interpret.
- Low computational times.

Cons

• Classification Trees is a GREEDY procedure, not OPTIMAL.

+ Advances in both computer performance and Mathematical Optimization solvers

- Integer Programming-based strategies:
 - + Bertsimas and Dunn 2017.
 - + Bertsimas, Dunn and Mundru, 2019.
 - $+\,$ Günlük et al. 2018.
 - $+\,$ Verwer and Zhang 2017, Verwer et al. 2017.
- It is commonly assumed that training sets are small.
- A CPU time limit is imposed to the solver.

- Integer Programming-based strategies:
 - + Bertsimas and Dunn 2017.
 - $+\,$ Bertsimas, Dunn and Mundru, 2019.
 - $+\,$ Günlük et al. 2018.
 - + Verwer and Zhang 2017, Verwer et al. 2017.
- It is commonly assumed that training sets are small.
- A CPU time limit is imposed to the solver.

Our proposal: a **continuous** optimization-based method which yields **better results** by performing several local searches in relatively **short time**.

We have a sample $I = \{(\boldsymbol{x}_i, y_i)\}_{1 \le i \le n}$, where $\boldsymbol{x}_i \in [0, 1]^p$ and $y_i \in \{1, \dots, K\}$.

We have a sample $I = \{(\boldsymbol{x}_i, y_i)\}_{1 \le i \le n}$, where $\boldsymbol{x}_i \in [0, 1]^p$ and $y_i \in \{1, \dots, K\}$. A maximal binary tree of depth D. Nodes: Branch $t \in \tau_B$, Leaf $t \in \tau_L$.

We have a sample $I = \{(\boldsymbol{x}_i, y_i)\}_{1 \le i \le n}$, where $\boldsymbol{x}_i \in [0, 1]^p$ and $y_i \in \{1, \dots, K\}$. A maximal binary tree of depth D. Nodes: Branch $t \in \tau_B$, Leaf $t \in \tau_L$.

• Oblique splits:

 $\begin{array}{ll} a_{jt} \in [-1,1] & \text{ coefficient of predictor variable } j \text{ in the oblique cut} \\ & \text{ over branch node } t \in \tau_B, \\ \mu_t \in [-1,1] & \text{ location parameter at branch node } t \in \tau_B. \end{array}$

Probabilities

Probabilities

Probabilities

• Each $t \in \tau_L$ is labeled with one class:

$$C_{kt} = \begin{cases} 1, & \text{node } t \text{ is labeled with class } k \\ 0, & \text{otherwise} \end{cases}, k = 1, \dots, K, \ t \in \tau_L$$

$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_L.$$

• Each $t \in \tau_L$ is labeled with one class:

$$C_{kt} = \begin{cases} 1, & \text{node } t \text{ is labeled with class } k \\ 0, & \text{otherwise} \end{cases}, k = 1, \dots, K, \ t \in \tau_L$$

$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_L.$$

• Each class k = 1, ..., K is identified by, at least, one terminal node:

$$\sum_{t\in\tau_L} C_{kt} \ge 1, \ k = 1, \dots, K.$$

• We now introduce a misclassification cost for classifying an individual from class k in class k':

$$W_{kk'} \ge 0, \ k, k' = 1, \dots, K, \ k \neq k'.$$

• We now introduce a misclassification cost for classifying an individual from class k in class k':

$$W_{kk'} \ge 0, \ k, k' = 1, \dots, K, \ k \neq k'.$$

• Objective

 \min

$$\sum_{k=1}^{K} \sum_{i \in I_{k}} \sum_{t \in \tau_{L}} P_{it}\left(\boldsymbol{a}, \boldsymbol{\mu}\right) \sum_{k' \neq k} C_{k't} W_{kk'}$$

(Mixed-Integer Non-Linear Optimization Problem)

$$\min \sum_{k=1}^{K} \sum_{i \in I_{k}} \sum_{t \in \tau_{L}} P_{it} (\boldsymbol{a}, \boldsymbol{\mu}) \sum_{k' \neq k} C_{k't} W_{kk'}$$
s.t.
$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_{L},$$

$$\sum_{t \in \tau_{L}} C_{kt} \geq 1, \ k = 1, \dots, K,$$

$$a_{jt} \in [-1, 1], \ j = 1, \dots, p, \ t \in \tau_{B},$$

$$\mu_{t} \in [-1, 1], \ t \in \tau_{B},$$

$$C_{kt} \in \{0, 1\}, \ k = 1, \dots, K, \ t \in \tau_{L}.$$

(Continuous Non-Linear Optimization Problem)

$$\min \qquad \sum_{k=1}^{K} \sum_{i \in I_{k}} \sum_{t \in \tau_{L}} P_{it} (\boldsymbol{a}, \boldsymbol{\mu}) \sum_{k' \neq k} C_{k't} W_{kk'}$$
s.t.
$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_{L},$$

$$\sum_{t \in \tau_{L}} C_{kt} \geq 1, \ k = 1, \dots, K,$$

$$a_{jt} \in [-1, 1], \ j = 1, \dots, p, \ t \in \tau_{B},$$

$$\mu_{t} \in [-1, 1], \ t \in \tau_{B},$$

$$C_{kt} \in [0, 1], \ k = 1, \dots, K, \ t \in \tau_{L}.$$

$$(ORCT)$$

Theorem

There exists an optimal solution to ORCT such that $C_{kt} \in \{0, 1\}$, $k = 1, \ldots, K, t \in \tau_L$.

ORCT's prediction

A new unlabeled observation \boldsymbol{x}

the decision variables are used for predicting its class:

$$m_{n}(\boldsymbol{x}) = \arg \max_{k} \left\{ \sum_{t \in \tau_{L}} \mathbb{P}\left(\boldsymbol{x} \in k | \boldsymbol{x} \in t\right) \mathbb{P}\left(\boldsymbol{x} \in t\right) \right\} = \arg \max_{k} \left\{ \sum_{t \in \tau_{L}} C_{kt} \cdot P_{\boldsymbol{x}t}\left(\boldsymbol{a}, \boldsymbol{\mu}\right) \right\}$$

ORCT's prediction

Individuals

114 / 133

Data set	n	p	K	Class distribution
Sonar	208	60	2	55% - 45%
Wisconsin	569	30	2	63% - 37%
Credit-approval	653	37	2	55% - 45%
Pima	768	8	2	65% - 35%
German-credit	1000	48	2	70% - 30%
Ozone	1848	72	2	97% - 3%
Spambase	4601	57	2	61% - 39%
Iris	150	4	3	33.3%-33.3%-33.3%
Wine	178	13	3	40%-33%-27%
Seeds	210	7	3	33.3%-33.3%-33.3%
Thyroid	3772	21	3	92.5%-5%-2.5%
Car	1728	15	4	70%-22%-4%-4%

UCI Machine Learning Repository

• Logistic CDF:

$$F\left(\cdot;\gamma\right) = \frac{1}{1 + \exp\left(-\left(\cdot\right)\gamma\right)}, \ \gamma > 0,$$

 $\gamma=512.$

• Logistic CDF:

$$F\left(\cdot;\gamma\right) = \frac{1}{1 + \exp\left(-\left(\cdot\right)\gamma\right)}, \ \gamma > 0,$$

 $\gamma=512.$

• Equal misclassification weights,

$$W_{kk'} = 0.5, \ k, k' = 1, \dots, K, \ k \neq k'.$$

• Logistic CDF:

$$F\left(\cdot;\gamma\right) = \frac{1}{1 + \exp\left(-\left(\cdot\right)\gamma\right)}, \ \gamma > 0,$$

 $\gamma=512.$

• Equal misclassification weights,

$$W_{kk'} = 0.5, \ k, k' = 1, \dots, K, \ k \neq k'.$$

• 10 hold-out runs: training subset (75%) and test subset (25%).

• Logistic CDF:

$$F\left(\cdot;\gamma\right) = \frac{1}{1 + \exp\left(-\left(\cdot\right)\gamma\right)}, \ \gamma > 0,$$

 $\gamma=512.$

• Equal misclassification weights,

$$W_{kk'} = 0.5, \ k, k' = 1, \dots, K, \ k \neq k'.$$

- 10 hold-out runs: training subset (75%) and test subset (25%).
- Performance measure: average accuracy over the 10 test subsets.

• Logistic CDF:

$$F(\cdot;\gamma) = \frac{1}{1 + \exp\left(-\left(\cdot\right)\gamma\right)}, \ \gamma > 0,$$

 $\gamma=512.$

• Equal misclassification weights,

$$W_{kk'} = 0.5, \ k, k' = 1, \dots, K, \ k \neq k'.$$

- 10 hold-out runs: training subset (75%) and test subset (25%).
- Performance measure: average accuracy over the 10 test subsets.
- Python 3.5, IPOPT 3.11.1 solver.

ORCT compared with:

- CART (Breiman et al. 1984).
- **OCT-H** (Bertsimas and Dunn 2017).

D = 1

Data set	ORCT average	Out-of-sample accuracy		ccuracy
	time (in secs)	ORCT	CART	OCT-H
Sonar	22	76.3	70.0	70.4
Wisconsin	24	96.4	92.0	93.1
Credit-approval	22	83.7	85.7	87.9
Pima	21	75.8	74.2	71.6
German-credit	28	72.8	72.1	71.6
Ozone	94	96.7	95.6	96.8
Spambase	72	89.8	89.2	83.6

D = 1

Data set	ORCT average	Out-of-sample accuracy		ccuracy
	time (in secs)	ORCT	CART	OCT-H
Sonar	22	76.3	70.0	70.4
Wisconsin	24	96.4	92.0	93.1
Credit-approval	22	83.7	85.7	87.9
Pima	21	75.8	74.2	71.6
German-credit	28	72.8	72.1	71.6
Ozone	94	96.7	95.6	96.8
Spambase	72	89.8	89.2	83.6

D = 2

Data set	ORCT average	Out-of-sample accuracy			
	time (in secs)	ORCT	CART	OCT-H	
Iris	17	95.9	92.7	95.1	
Wine	23	96.6	88.6	91.1	
Seeds	20	94.2	90.2	90.6	
Thyroid	145	92.2	99.1	92.5	
Car	71	90.8	88.1	87.5	

Sparsity on ORCTs

$$\min \sum_{k=1}^{K} \sum_{i \in I_{k}} \sum_{t \in \tau_{L}} P_{it}(\boldsymbol{a}, \boldsymbol{\mu}) \sum_{k' \neq k} W_{kk'} C_{k't}$$
s.t.
$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_{L},$$

$$\sum_{t \in \tau_{L}} C_{kt} \geq 1, \ k = 1, \dots, K,$$

$$a_{jt} \in [-1, 1], \ j = 1, \dots, p, \ t \in \tau_{B},$$

$$\mu_{t} \in [-1, 1], \ t \in \tau_{B},$$

$$C_{kt} \in [0, 1], \ k = 1, \dots, K, \ t \in \tau_{L},$$

Sparsity on ORCTs

Local: less predictor variables at each node

$$\min \qquad \sum_{k=1}^{K} \sum_{i \in I_k} \sum_{t \in \tau_L} P_{it}(a, \mu) \sum_{k' \neq k} W_{kk'} C_{k't} + \lambda^L \sum_{j=1}^{p} \|a_j\|_1$$
s.t.
$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_L,$$

$$\sum_{t \in \tau_L} C_{kt} \ge 1, \ k = 1, \dots, K,$$

$$a_{jt} \in [-1, 1], \ j = 1, \dots, p, \ t \in \tau_B,$$

$$\mu_t \in [-1, 1], \ t \in \tau_B,$$

$$C_{kt} \in [0, 1], \ k = 1, \dots, K, \ t \in \tau_L,$$

Sparsity on ORCTs

Local: less predictor variables at each node Global: less predictor variables in the tree

$$\min \qquad \sum_{k=1}^{K} \sum_{i \in I_{k}} \sum_{t \in \tau_{L}} P_{it}(a, \mu) \sum_{k' \neq k} W_{kk'} C_{k't} + \lambda^{L} \sum_{j=1}^{p} \|a_{j.}\|_{1} + \lambda^{G} \sum_{j=1}^{p} \|a_{j.}\|_{\infty}$$
s.t.
$$\sum_{k=1}^{K} C_{kt} = 1, \ t \in \tau_{L},$$

$$\sum_{t \in \tau_{L}} C_{kt} \geq 1, \ k = 1, \dots, K,$$

$$a_{jt} \in [-1, 1], \ j = 1, \dots, p, \ t \in \tau_{B},$$

$$\mu_{t} \in [-1, 1], \ t \in \tau_{B},$$

$$C_{kt} \in [0, 1], \ k = 1, \dots, K, \ t \in \tau_{L},$$

Theorem

Let $\sigma \in [0,1]$. For

$$egin{aligned} \lambda^L &\geq (1-\sigma) \max_{\substack{C_{kt} \in \{0,1\}\ \mu_t \in [-1,1]}} & \max_{j=1,...,p} \left\|
abla_{a_j.} g\left(0,\mu,C
ight)
ight\|_{\infty} ext{and} \ \lambda^G &\geq \sigma \max_{\substack{C_{kt} \in \{0,1\}\ \mu_t \in [-1,1]}} & \max_{j=1,...,p} \left\|
abla_{a_j.} g\left(0,\mu,C
ight)
ight\|_{1}, \end{aligned}$$

a = 0 is a stationary point of the sparse ORCT, being g the misclassification cost term in the objective function.

Sparse ORCT at depth 1 (
$$\lambda^L = \lambda^G$$
)

Theorem

Let $F \in C^1$ a CDF with f as its corresponding PDF. The minimum λ^L from which $a_{\cdot 1} = 0$ is a stationary point to the sparse ORCT at depth 1 is:

$$\lambda^L = \max\left\{\lambda_{\mu_1=-1}^L, \lambda_{\mu_1=1}^L\right\},\,$$

where

$$\lambda_{\mu_1}^L = rac{1}{p} f\left(-rac{\mu_1}{p}
ight) \max_{j=1,...,p} \left| -W_{21} \sum_{i \in I_2} x_{ij} + W_{12} \sum_{i \in I_1} x_{ij}
ight|.$$

Results for local sparsity (D = 1)

 λ^L varying, $\lambda^G = 0$

Results for local sparsity (D = 2)

 λ^L varying, $\lambda^G = 0$

Results for global sparsity (D = 2)

 $\lambda^L = 0, \, \lambda^G$ varying

(Sparse) linear regression models

(Sparse and cost-sensitive) linear models using MINLO

$$\min_{\boldsymbol{\beta} \in \boldsymbol{\mathcal{B}}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \boldsymbol{\beta}_j X_{ij} \right)^2$$

 ${\mathcal B}$ modelling, among other things, which features are selected

(Sparse and cost-sensitive) linear models using MINLO

$$\min_{\boldsymbol{\beta} \in \boldsymbol{\mathcal{B}}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \boldsymbol{\beta}_j X_{ij} \right)^2$$

 ${\mathcal B}$ modelling, among other things, which features are selected

- Bertsimas and King, *Operations Research*, 2015.
- Bertsimas, King and Mazumder, Annals of Statistics, 2016.
- Bertsimas, Pauphilet, Van Parys, in arXiv.org, 2019.
- C., Olivares-Nadal, Ramírez-Cobo, *Biostatistics*, 2017.

Sparsity in linear models via convex optim

$$Y_i = \sum_{j=1}^{N} \frac{\beta_j X_{ij}}{\sum_{j=1}^{N} \beta_j X_{ij}} + e_i \qquad i = 1, \dots, m$$

Sparsity in linear models via convex optim

$$Y_{i} = \sum_{j=1}^{N} \beta_{j} X_{ij} + e_{i} \qquad i = 1, \dots, m \qquad \min_{\beta} \sum_{i=1}^{m} \left(Y_{i} - \sum_{j=1}^{N} \beta_{j} X_{ij} \right)^{2}$$

Sparsity in linear models via convex optim

$$Y_{i} = \sum_{j=1}^{N} \beta_{j} X_{ij} + e_{i}$$
 $i = 1, ..., m$ $\min_{\beta} \sum_{i=1}^{m} \left(Y_{i} - \sum_{j=1}^{N} \beta_{j} X_{ij} \right)^{2}$

Making the model sparse. The lasso

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \beta_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\beta}\|_1$$

R. Tibshirani, "Regression shrinkage and selection via the lasso", J. of the Royal Statistical Society - B, 1996

 ≈ 27.500 cites in Scholar

128 / 133

Lasso

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \beta_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\beta}\|_1$$
$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \boldsymbol{\beta}_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\beta}\|_1$$

• Lasso and relatives implemented in several packages in R (e.g. lars, elasticnet, ...) and Python (scikit-learn)

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \boldsymbol{\beta}_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\beta}\|_1$$

- Lasso and relatives implemented in several packages in R (e.g. lars, elasticnet, ...) and Python (scikit-learn)
- Records treated homogeneously. No control of errors on subpopulations, in case of heterogeneous data

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \boldsymbol{\beta}_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\beta}\|_1$$

- Lasso and relatives implemented in several packages in R (e.g. lars, elasticnet, ...) and Python (scikit-learn)
- Records treated homogeneously. No control of errors on subpopulations, in case of heterogeneous data
- New Mathematical Optimization problem:

$$\min_{\boldsymbol{\beta}} \quad \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \beta_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\beta}\|_1$$

s.t.
$$\sum_{i \in S_h} \left(Y_i - \sum_{j=1}^{N} \beta_j X_{ij} \right)^2 \le (1 + \tau_h) SSE_h \qquad \forall h$$

$$\min_{\boldsymbol{\beta}} \quad \sum_{i=1}^{m} \left(Y_i - \sum_{j=1}^{N} \beta_j X_{ij} \right)^2 + \lambda \|\boldsymbol{\beta}\|_1$$

s.t.
$$\sum_{i \in S_h} \left(Y_i - \sum_{j=1}^{N} \beta_j X_{ij} \right)^2 \le (1 + \tau_h) SSE_h \qquad \forall h$$

 \ldots but we don't know how to (easily) build the path

XX Latin Ibero-American Conference on Operations Research

Madrid (Spain) August 31- September 2 2020

www.claio2020.com

We invite members of ALIO and the worldwide Operations Research community to take part of XX Latin-Iberian-American Conference on Operations Research (CLAIO2020), to be held in Madrid (Spain), August 31st-September 2nd 2020. The conference is organized by the Latin-American Association of Operations Research Societies (ALIO), the Spanish Society of Statistics and Operations Research (SEIO), Universidad Complutense de Madrid (UCM) and Universidad Rey Juan Carlos (URJC). The academic program will consist of parallel, technical and special sessions, plenary talks and tutorials covering several aspects of OR.

Antonio Alonso-Ayuso (URJC), Javier Martín-Campo (UCM), Conference Chairs of CLAIO 2020

Organizers

Confirmed speakers:

Anna Nagurney. University of Massachusetts (USA) Sebastian Ceria. Axioma (Argentina) Emma Hart. University of Edimburg (UK) Ángel Corberán. Universitat de Valencia (Spain) Carlos Henggeler Antunes. Universidade de Coimbra (Portugal)

Many thanks!!!

ecarrizosa@us.es